The History of Superparamagnetic Materials and Their Future in Cancer Therapy

Authors

DOI:

https://doi.org/10.59973/emjsr.185

Keywords:

Superparamagnets, SPIONs, Nanoparticles, Targeted drug therapy

Abstract

Superparamagnetism, is a form of magnetism exhibited by small ferromagnetic nanoparticles and challenges conventional magnetic behaviours observed in larger particles. Whereby as particle size decreases, thermal fluctuations gain prominence, leading to the random reorientation of magnetic moments at a critical threshold, known as the superparamagnetic threshold. This article aims to explore superparamagnetic materials' historical evolution and current state, emphasising their technological and medical applications. Starting with Louis Néel's foundational work in 1949, introduced the concept of superparamagnetism, to where superparamagnetic materials have found a promising application in cancer treatment. And their ability to be guided by external magnetic fields facilitates targeted drug delivery, offering precise manipulation for localised therapy.

References

Lamichhane, N., Eizadi Sharifabad, M., Hodgson, B., Mercer, T., & Sen, T. (2022). Superparamagnetic iron oxide nanoparticles

(SPIONs) as therapeutic and diagnostic agents. In P. Kesharwani & K. K. Singh (Eds.), Nanoparticle Therapeutics (pp. 455-497).

Academic Press. ISBN 9780128207574. https://doi.org/10.1016/B978-0-12-820757-4.00003-X DOI: https://doi.org/10.1016/B978-0-12-820757-4.00003-X

Libretexts. (2021, September 8). Superparamagnetism. Engineering LibreTexts. https://eng.libretexts.org/Bookshelves/

Materials_Science/Supplemental_Modules_(Materials_Science)/Magnetic_Properties/Superparamagnetism

Wikipedia contributors. (2023, September 29). N´eel relaxation theory. In Wikipedia, The Free Encyclopedia. Retrieved 00:03, December 6, 2023, from https://en.wikipedia.org/w/index.php?title=N%C3%A9el_relaxation_theory&oldid=1177795781

Barbara, B. (2019). Louis N´eel: His multifaceted seminal work in magnetism. Comptes Rendus Physique, 20(7-8), 631–649. https://doi.org/10.1016/j.crhy.2019.07.003 DOI: https://doi.org/10.1016/j.crhy.2019.07.003

N´eel, L. (1947). Propri´et´es d’un ferromagn´etique cubique en grains fins. Comptes Rendus Hebdomadaires Des Seances De L’Academie Des Sciences, 224(21), 1488–1490. https://hal.science/hal-02878474/document

N´eel, L. (1949). Influence des fluctuations thermiques sur l’aimantation de grains ferromagn´etiques tr`es fins. Comptes Rendus Hebdo-madaires Des Seances De L’Academie Des Sciences, 228(8), 664-666.

N´eel, L. (1949). Th´eorie du traˆınage magn´etique des ferromagn´etiques en grains fins avec application aux terres cuites. Annales de G´eophysique, 5, 99–136. https://hal.science/hal-03070532

N´eel, L. (1951). Le signe de l’aimantation thermor´emanente des roches. Journal de Physique et le Radium, 12, 11S. DOI: https://doi.org/10.1051/jphysrad:01951001203033900

N´eel, L. (1958). Sur les effets d’un couplage entre grains ferromagn´etiques dou´es d’hyst´er´esis. Comptes rendus hebdomadaires des seances de l academie des sciences, 246(16), 2313-2319.

N´eel, L. (1961). Superparamagn´etisme des grains tr`es fins antiferromagn´etiques. Comptes Rendus Hebdomadaires Des Seances De L’Academie Des Sciences, 252(26), 4075-4080.

N´eel, L. (1961). Superposition de l’antiferromagn´etisme et du superparamagn´etisme dans un grain tr`es fin. Comptes Rendus de l’Acad´emie des Sciences. Paris, 253, 9.

N´eel, L. (1961). Super-antiferromagn´etisme dans les grains fins. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 253(2), 203-208.

N´eel, L. (1961). Sur le calcul de la susceptibilit´e additionnelle super-antiferromagn´etique des grains fins et sa variation thermique. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 253(13), 1286-1291.

N´eel, L. (1962). Influence des couplages magn´etocristallins sur le super-antiferromagn´etisme des grains fins. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 254(4), 598-602.

N´eel, L. (1962). Physical Problems of Rock Magnetism Propri´et´es Magn´etiques des Grains Fins Antiferromagn´etiques: Superparamagn´etisme et Superantiferromagn´etisme. Journal of the Physical Society of Japan, 17(Suppl B1), 676-684.

N´eel, L. (1949). Th´eorie du traˆınage magn´etique des ferromagn´etiques en grains fins avec application aux terres cuites. Annales de G´eophysique, 5, 99–136. https://hal.science/hal-03070532

Majumder, D., & Karan, S. K. (2013). Magnetic properties of ceramic nanocomposites. In Elsevier eBooks (pp. 51–91). https://doi.org/10.1533/9780857093493.1.51 DOI: https://doi.org/10.1533/9780857093493.1.51

Wikipedia contributors. (2023, November 29). Landau–Lifshitz–Gilbert equation. In Wikipedia, The Free Encyclopedia. Retrieved 00:12, December 6, 2023, from https://en.wikipedia.org/w/index.php?title=Landau

Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The History of Nanoscience and Nanotechnology: From

Chemical–Physical Applications to Nanomedicine. Molecules, 25(1), 112. https://doi.org/10.3390/molecules25010112 DOI: https://doi.org/10.3390/molecules25010112

Feynman, R. P. (2012). There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics. In Handbook of Nanoscience, Engineering, and Technology (public, pp. 3–12). CRC Press. DOI: https://doi.org/10.1201/b11930-3

Taniguchi, N. (1974). On the basic concept of’nano-technology’. In Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, 1974. Japan Society of Precision Engineering.

Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Tunnelling through a controllable vacuum gap. Applied Physics Letters, 40, 178. https://doi.org/10.1063/1.92999 DOI: https://doi.org/10.1063/1.92999

Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Surface studies by scanning tunnelling microscopy. Physical Review Letters, 49, 57–61. https://doi.org/10.1103/PhysRevLett.49.57. DOI: https://doi.org/10.1103/PhysRevLett.49.57

Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930–933. https://doi.org/10.1103/PhysRevLett.56.930 DOI: https://doi.org/10.1103/PhysRevLett.56.930

Binnig, G. (1990, October 16). Atomic Force Microscope and Method for Imaging Surfaces with Atomic Resolution (U.S. Patent No. 4724318A).

Farkaˇs, B. and de Leeuw, N.H. (2021) A perspective on modelling metallic magnetic nanoparticles in biomedicine:

From monometals to Nanoalloys and ligand-protected particles, Materials (Basel, Switzerland). Available at:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269646/

Yan, Z., Taylor, M., Mascareno, A., & Mpourmpakis, G. (2018). Size-, Shape-, and Composition-Dependent Model for Metal Nanoparticle Stability Prediction. Nano Letters, 18(4), 2696–2704. https://doi.org/10.1021/acs.nanolett.8b00670 DOI: https://doi.org/10.1021/acs.nanolett.8b00670

Taylor, M. G., Austin, N., Gounaris, C. E., & Mpourmpakis, G. (2015). Catalyst design based on morphology- and environment-dependent adsorption on metal nanoparticles. ACS Catalysis, 5, 6296–6301. https://doi.org/10.1021/acscatal.5b01696. DOI: https://doi.org/10.1021/acscatal.5b01696

Kozlov, S. M., Kov´acs, G., Ferrando, R., & Neyman, K. M. (2015). How to determine accurate chemical ordering in several nanometer large bimetallic crystallites from electronic structure calculations. Chemical Science, 6, 3868–3880. https://doi.org/10.1039/C4SC03321C. DOI: https://doi.org/10.1039/C4SC03321C

Ferrando, R., Fortunelli, A., & Rossi, G. (2005). Quantum effects on the structure of pure and binary metallic nanoclusters. Physical Review B - Condensed Matter and Materials Physics, 72, 085449. https://doi.org/10.1103/PhysRevB.72.085449. DOI: https://doi.org/10.1103/PhysRevB.72.085449

Zhu, B., Xu, Z., Wang, C., & Gao, Y. (2016). Shape evolution of metal nanoparticles in a water vapor environment. Nano Letters, 16, 2628–2632. https://doi.org/10.1021/acs.nanolett.6b00254 DOI: https://doi.org/10.1021/acs.nanolett.6b00254

W´ang, Y. X., & Id´ee, J. M. (2017). A comprehensive literature update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quantitative Imaging in Medicine and Surgery, 7(1), 88–122. https://doi.org/10.21037/qims.2017.02.09 DOI: https://doi.org/10.21037/qims.2017.02.09

Vangijzegem, T., Lecomte, V., Ternad, I., Van Leuven, L., Muller, R. N., Stanicki, D., & Laurent, S. (2023). Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics, 15(1), 236. https://doi.org/10.3390/pharmaceutics15010236 DOI: https://doi.org/10.3390/pharmaceutics15010236

Rubia-Rodr´ıguez, I., Santana-Otero, A., Spassov, S., Tomb´acz, E., Johansson, C., De La Presa, P., Teran, F. J., Morales, M. d. P.,

Veintemillas-Verdaguer, S., Thanh, N. T. K., & et al. (2021). Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials, 14(4), 706. https://doi.org/10.3390/ma14040706 DOI: https://doi.org/10.3390/ma14040706

Zhi, D., Yang, T., Yang, J., Fu, S., & Zhang, S. (2020). Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomaterialia, 102, 13-34. https://doi.org/10.1016/j.actbio.2019.11.027 DOI: https://doi.org/10.1016/j.actbio.2019.11.027

Yoffe, S., Leshuk, T., Everett, P., & Gu, F. (2013). Superparamagnetic iron oxide nanoparticles (SPIONs): synthesis and surface modification techniques for use with MRI and other biomedical applications. Current pharmaceutical design, 19(3), 493–509. DOI: https://doi.org/10.2174/138161213804143707

Cryer, A. M., & Thorley, A. J. (2019). Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacology & Therapeutics, 198, 189-205. https://doi.org/10.1016/j.pharmthera.2019.02.010. DOI: https://doi.org/10.1016/j.pharmthera.2019.02.010

Solar, P., Gonz´alez, G., Vilos, C., et al. (2015). Multifunctional polymeric nanoparticles doubly loaded with SPION and ceftiofur retain their physical and biological properties. Journal of Nanobiotechnology, 13(1), 14. https://doi.org/10.1186/s12951-015-0077-5 DOI: https://doi.org/10.1186/s12951-015-0077-5

Zhao, Z. X., Ren, R., Li, X., Xu, R. D., Wu, Z. Q., Wen, L. Y., Chen, S., Han, J., Zhu, G. P., & Liu, Y. J. (2017). Modifying the surface

properties of iron oxide nanoparticles with organic-inorganic shells. Journal of Nanoscience and Nanotechnology, 17(3), 1957-1962. DOI: https://doi.org/10.1166/jnn.2017.13010

Fan, C. H., Cheng, Y. H., Ting, C. Y., Ho, Y. J., Hsu, P. H., Liu, H. L., & Yeh, C. K. (2016). Ultrasound/Magnetic Target-

ing with SPIO-DOX-Microbubble Complex for Image-Guided Drug Delivery in Brain Tumors. Theranostics, 6(10), 1542-1556.

https://doi.org/10.7150/thno.15297 DOI: https://doi.org/10.7150/thno.15297

Idris, M. I., Zaloga, J., Detsch, R., et al. (2018). Surface Modification of SPIONs in PHBV Microspheres for Biomedical Applications. Scientific Reports, 8, 7286. https://doi.org/10.1038/s41598-018-25243-9 DOI: https://doi.org/10.1038/s41598-018-25243-9

Raj, R., & Das, S. (2016). Prospects of bacteriotherapy with nanotechnology in nanoparticle-drug conjugation approach for cancer therapy. Current Medical Chemistry, 23, 1477–1494. DOI: https://doi.org/10.2174/0929867323666160406120923

Sapet, C., Pellegrino, C., Laurent, N., Sicard, F., & Zelphati, O. (2012). Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo. Pharmaceutical Research, 29, 1203–1218. DOI: https://doi.org/10.1007/s11095-011-0629-9

Tong, S., Zhu, H., & Bao, G. (2019). Magnetic iron oxide nanoparticles for disease detection and therapy. Materials Today. Advance. https://doi.org/10.1016/j.mattod.2019.06.003 DOI: https://doi.org/10.1016/j.mattod.2019.06.003

Lassenberger, A., Scheberl, A., Stadlbauer, A., Stiglbauer, A., Helbich, T., & Reimhult, E. (2017). Individually stabilized, superparamagnetic nanoparticles with controlled shell and size leading to exceptional stealth properties and high relaxivities. ACS Applied Materials & Interfaces, 9, 3343–3353. DOI: https://doi.org/10.1021/acsami.6b12932

Shubayev, V. I., Pisanic 2nd, T. R., & Jin, S. (2009). Magnetic nanoparticles for theranostics. Advanced Drug Delivery Reviews, 61, 467–477. DOI: https://doi.org/10.1016/j.addr.2009.03.007

Liang, R. Z., Wei, M., Evans, D. G., & Duan, X. (2014). Inorganic nanomaterials for bioimaging, targeted drug delivery, and DOI: https://doi.org/10.1002/chin.201502270

therapeutics. Chemical Communications, 50, 14071–14081.

Kang, T., Li, F., Baik, S., Shao, W., Ling, D., & Hyeon, T. (2017). Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 136, 98-114. https://doi.org/10.1016/j.biomaterials.2017.05.013 DOI: https://doi.org/10.1016/j.biomaterials.2017.05.013

Zou, P., Yu, Y., Wang, Y. A., Zhong, Y., Welton, A., Galban, C., Wang, S., Sun, D. (2010). Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Molecular Pharmaceutics, 7(6), 1974–1984. DOI: https://doi.org/10.1021/mp100273t

Desai, N. (2012, March 10). Challenges in development of nanoparticle-based therapeutics. The AAPS journal. DOI: https://doi.org/10.1208/s12248-012-9339-4

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326161/

Moghimi, S. M., Hunter, A. C., &; Murray, J. C. (2001, June 1). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews. https://pharmrev.aspetjournals.org/content/53/2/283.short DOI: https://doi.org/10.1016/S0031-6997(24)01494-7

Duli ´nska-Litewka, J., Łazarczyk, A., Hałubiec, P., Szafra ´nski, O., Karnas, K., &; Karewicz, A. (2019, February 19).

Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel, Switzerland).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416629/

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68(6), 394-424. DOI: https://doi.org/10.3322/caac.21492

Downloads

Published

2025-03-11

How to Cite

Musa, G. (2025). The History of Superparamagnetic Materials and Their Future in Cancer Therapy. Emerging Minds Journal for Student Research, 3, P17-P25. https://doi.org/10.59973/emjsr.185

Issue

Section

Physics