Predicting Super Massive Black Hole Collisions Using LISA


  • Chris Warden University of Portsmouth, School of Mathematics and Physics, Portsmouth, PO1 3FX



Black Holes;, Super Massive Black Hole, LISA, Gravitational waves


LISA (Laser Interferometer Space Antenna) is due for launch in the 2030s. Its goal is to observe gravitational waves in the 10-4 to 10-1 Hz band. This frequency band contains signals from colliding Super Massive Black Holes, objects with masses in the range of millions, even billions, that of our own suns mass. These SMBHs are thought to lie at the heart of most, if not all galaxies. By understanding the physics of the underlying processes, and what LISA 'sees', we can predict when these mergers will occur. This would allow us to observe the merger directly in the EM spectrum, observing the light emitted from the merging accretion discs. This could yield a potentially vast amount of information about the composition and formation of these huge objects. In this project we explore some of the potential variations of the signals detected, and show that we can detect the merger several days prior to it occurring.


LIGO Lab | Caltech. n.d. What are Gravitational Waves?. [online] Available at: <>

Abbott, B. et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 93(12). 2017. ESA Science & Technology - Gravitational wave mission selected, planet-hunting mission moves forward. [online] Available at: <>. n.d. Black Holes | Science Mission Directorate. [online] Available at:

Bozza, V., 2009. Gravitational Lensing by Black Holes. General Relativity and Gravitation, 42(9).

Rosswog, S., 2007. Fallback accretion in the aftermath of a compact binary merger. Monthly Notices of the Royal Astronomical Society: Letters, 376(1), pp.L48-L51.

Bromm, V. and Yoshida, N., 2011. The First Galaxies. Annual Review of Astronomy and Astrophysics, 49(1), pp.373-407.

Einstein, A. and Rosen, N., 1937. On gravitational waves. Journal of the Franklin Institute, 223(1), pp.43-54.

LIGO Scientific and VIRGO Collaborations. 2016. The basic physics of the binary black hole merger GW150914. [online] Available at:

Abbott, B., 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. [online] Available at: PhysRevLett.116.061102

Prince, T., 2009. The Promise of Low-Frequency Gravitational Wave Astronomy. Available at:

Nitz, A., Harry, I., Brown, D., Biwer, C., Willis, J., Canton, T., Capano, C., Dent, T., Pekowsky, L., Williamson, A., Davies, G., De, S., Cabero, M., Machenschalk, B., Kumar, P., Macleod, D., Reyes, S., Pannarale, F., Massinger, T., Kumar, S., Tápai, M., Singer, L., Khan, S., Fairhurst, S., Nielsen, A., Singh, S., Gadre, B. and Dorrington, I., 2021. gwastro/pycbc: PyCBC Release 1.18.1. [online] Zenodo. Available at:

Schmidt, P., 2014. Studying and Modelling the Complete Gravitational-Wave Signal from Precessing Black Hole Binaries. [online] Available at: n.d. LISA - Laser Interferometer Space Antenna -NASA Home Page. [online] Available at:

Abuter, R., Amorim, A., Bauböck, M., Berger, J., Bonnet, H., Brandner, W., Clénet, Y., Coudé du Foresto, V., de Zeeuw, P., Dexter, J., Duvert, G., Eckart, A., Eisenhauer, F., Förster Schreiber, N., Garcia, P., Gao, F., Gendron, E., Genzel, R., Gerhard, O., Gillessen, S., Habibi, M., Haubois, X., Henning, T., Hippler, S., Horrobin, M., Jiménez-Rosales, A., Jocou, L., Kervella, P., Lacour, S., Lapeyrère, V., Le Bouquin, J., Léna, P., Ott, T., Paumard, T., Perraut, K., Perrin, G., Pfuhl, O., Rabien, S., Rodriguez Coira, G., Rousset, G., Scheithauer, S., Sternberg, A., Straub, O., Straubmeier, C., Sturm, E., Tacconi, L., Vincent, F., von Fellenberg, S., Waisberg, I., Widmann, F., Wieprecht, E., Wiezorrek, E., Woillez, J. and Yazici, S., 2019. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. Astronomy & Astrophysics, 625, p.L10.

Vlahovic, B., 2021. A New Cosmological Model of the Universe and New Interpretation for the Cosmic Microwave Background and Type Ia Supernovae Redshifts. [online] Available at:

Cutler, C. and Flanagan, É., 1994. Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform?. Physical Review D, 49(6), pp.2658-2697.

Harry, I., 2011. Can we hear black holes collide?. [online] p.36. Available at:

Brown, D., 2007. Searching for Gravitational Radiation from Binary Black Hole MACHOs in the Galactic Halo. [online] Available at: <> [Accessed 3 June 2021].

Schutz, B., 1999. Gravitational wave astronomy. Classical and Quantum Gravity, 16(12A), pp.A131-A156.

Robson, T., Cornish, N. and Liu, C., 2019. The construction and use of LISA sensitivity curves. Classical and Quantum Gravity, 36(10), p.105011.

Abbott, B. et al, 2017. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 96(2).



2024-01-13 — Updated on 2024-02-05


How to Cite

Warden, C. (2024). Predicting Super Massive Black Hole Collisions Using LISA. Emerging Minds Journal for Student Research, 2(1), 1–12. (Original work published January 13, 2024)