Revisiting Some Leibnizian Concepts in Einstein's Gravitational Theory

Authors

  • Alexandre Lyra de Oliveira Hist´oria das Ciˆencias e das T´ecnicas e Epistemologia - HCTE, UFRJ, Rio de Janeiro, CEP 20080-090, Brasil
  • Alexandre Andrei Observatorio Nacional/MCTI; Rio de Janeiro, CEP 20921-400; Brasil
  • Gilberto Castro Hist ´oria das Ciˆencias e das T´ecnicas e Epistemologia - HCTE, UFRJ, Rio de Janeiro, CEP 20080-090, Brasil
  • Marcelo Mattos Secretaria de Estado de Educac¸ ˜ao/SEEDUC , CEP 20260-080, Brasil
  • Lucas Oliveira Programa de Pós Graduação em Filosofia da Universidade de Brasília, Brasília-DF, Brazil https://orcid.org/0009-0000-4515-7288

DOI:

https://doi.org/10.59973/emjsr.259

Keywords:

General Relativity, Equivalence Principle, Schild’s Ladder, Principle of Indiscernibles, Leibnizian Concepts

Abstract

We will discuss the analogies between principles and concepts established by G. Leibniz and their potential repercussions on Einstein's Theory of Gravitation. Our focus is on a formulation of Einstein's Equivalence Principle, specifically, the infinitesimal [strong] formulation of Einstein's principle. We will discuss Leibnizian concepts relevant to the technique of infinitesimal parallel transport of vectors, including the so-called "Schild ladder". To this end, we will address the Principle of Identity of Indiscernibles and other pertinent Leibnizian ideas, particularly those related to infinitesimals. We will point out that it is possible to establish connections between Leibniz's fundamental contributions and the framework of General Relativity. Although there are extensive debates in the literature on these topics, we identify new issues within General Relativity that deserve attention.

Author Biographies

Alexandre Andrei, Observatorio Nacional/MCTI; Rio de Janeiro, CEP 20921-400; Brasil

Dr Alexandre Andrei holds a BSc in Astronomy from the Federal University of Rio de Janeiro (1976), an MSc from the University of São Paulo (1982), and a PhD in Physics from the University of Cambridge (1988). He is a senior researcher at the National Observatory (ON/MCTI) and associate researcher with ESA’s Gaia mission, where he coordinates the Initial Quasar Catalogue Working Group (CU3) and participates in the GBOT project.

He collaborates with several international institutions, including the Shanghai Astronomical Observatory, the Observatoire de Paris, and the Osservatorio Astronomico di Torino. He is a member of IAU Commissions on Astrometry and Solar Physics, and serves as PI on FINEP and Brazil–China bilateral projects on heliometry, space debris, and navigation satellites.

His research focuses on astrometry, photometry, quasars, reference frames (ICRS, Gaia), solar diameter variability, brown dwarfs, and space weather. He is also active in postgraduate teaching and international collaborative projects on Solar System astrometry and occultations.

 

Gilberto Castro, Hist ´oria das Ciˆencias e das T´ecnicas e Epistemologia - HCTE, UFRJ, Rio de Janeiro, CEP 20080-090, Brasil

Gilberto Castro is a researcher in a multidisciplinary group focused on the Principle of Maximum Entropy, epistemology, and the history of Information Theory. His current work explores links between Non-Demolition Quantum Theory and the Quantum Maximum Entropy Principle.

He holds an MSc in Telecommunications Engineering (UFF, 2010) and degrees in Electrical Engineering, Telecommunications, and Business Administration. He has experience in PLC (Power Line Communication) systems for broadband data transmission and has also worked on renewable energy projects for sustainable power generation in Brazil. His technical and managerial background supports a results-driven approach and advisory roles in SMEs.

Marcelo Mattos, Secretaria de Estado de Educac¸ ˜ao/SEEDUC , CEP 20260-080, Brasil

Marcelo Mattos holds a PhD in History and Philosophy of Natural Sciences and Mathematics from UFRJ, and an MSc in Systems and Computer Engineering from the same university. He is a lecturer in the state education system of Rio de Janeiro (SEEDUC) and has also taught at ISERJ/FAETEC and in private universities, delivering courses in Applied Mathematics, Statistics, and related subjects in Engineering, Business, and Marketing programmes. He is currently part of a research group in Physics and Mathematics, focusing on the epistemological foundations of the Principle of Maximum Entropy and Communication Theory.

Lucas Oliveira, Programa de Pós Graduação em Filosofia da Universidade de Brasília, Brasília-DF, Brazil

Lucas Paulo Almeida Oliveira holds a BSc in Physics from UFMG and an MSc in History of Science, Technology and Epistemology (HCTE) from UFRJ. He is currently a PhD candidate in Philosophy at the University of Brasília (UnB).

References

F. W. Hehl, J. Dermott McCrea b, Eckehard W. Mielke, Yuval Ne’eman. Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance . Physics Reports 258 (1995) I-171.

Thirring, W. 1961. An Alternative Approach to the Theory of Gravitation. In: Annals of Physics, vol.16, 96-117.

Hawking, S.; Penrose, R. 1996. The Nature of Space and Time. In: Scientific American, July 1996, p. 62.

P. Touboul et al. 2017, Microscope Mission. First Results of a Space Test of the Equivalence Principle. In: Phys. Rev. Lett. 119, 231101.

P. Touboul et al. 2022. Result of the Microscope Weak Equivalence Principle Test. In: Arxiv 2209.145488, v.1 [gr-qc].

Anderson, E. K. et al. 2023. Observation of the Effect of Gravity on the Motion of Antimatter. In: Nature, v. 621, pages 716–722. https:.//doi.org/10.1038/s41586-023-06527-1.

Genova, A. et al. 2018. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission. Nature Communications, p.1, 9:289.

Eddington, A. S. 1930. The Mathematical Theory of Relativity, 2nd Edition, Cambridge University Press, London, UK.

Synge, J. L. 1960. Relativity: The General Theory, North-Holland Publishing Company, Amsterdam.

Synge, J. L. 1966. What is Einstein’s Theory of Gravitation: in Perspectives in Geometry and Relativity, Edited by B. Hoffmann, Indiana Univ. Press, Bloomington and London.

Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & Sons, Inc. New York.

Weinberg, S. 1995. The Quantum Theory of Fields, v.1, Cambridge Univ. Press.

Friedman, M. 1983. Foundations of Space-Time Theories: Princeton University Press.

D’Inverno, R. 1998. Introducing Einstein’s Relativity. Clarendon Press, Oxford, USA.

Prugovecki, E. 1995. The Principles of Quantum General Relativity. World Scientific Singapore.

Norton, J. 1985. What was Einstein’s Principle of Equivalence. Stud. Hist. Phil. Sci., Vol. 16, No.3, pp. 203 -246.

Leibniz, G. W. 1995. La Caract´eristique G´eom´etrique. Texte introduit par Javier Echeverr´ıa et traduit par Marc parmentier. Librairie Philosophique J. Vrin, Paris.

De Risi, V. 2019. Analysis Situs, the Foundations of Mathematics and a Geometry of Space. The Oxford Handbook of Leibniz, ed. M.R. Antognazza, Oxford, Oxford University Press, pp. 247-58.

Brown, H. R. 2005. Physical Relativity - Space-time Structure from a Dynamical Perspective-Oxford University Press, New York.

Spekkens, R. W. 2019. The ontological identity of empirical indiscernibles: Leibniz’s methodological principle and its significance in the work of Einstein. In: Arxiv 1909.04628, v.1.

Smolin, L. 2019. Conference on Rotman Institute of Philosophy, The Identity of the Indiscernible as a Physical Principle’

https://www.youtube.com/watch?v=cyBxRonlmvo; Arxiv: (2019) 1712.04799 v3 “The dynamics of difference”; Foundations of

Physics, 42(10), 1239–1261 “ A Real Ensemble Interpretation of Quantum Mechanics”. The Singular Universe and the Reality of

Time - A Proposal in Natural Philosophy; Roberto Mangabeira Unger and Lee Smolin.

T. Mormann. 2025. Topology and Leibnizian Principles of the Identity of Indiscernibles. In: Archival history. First archival date: 2016-12-11 Latest version: 1 (2017-01-10)https : //philarchive.org/rec/THOTAL − 6. Acess 25/03/2025.

T. Mormann. 2020. Topological Aspects of Epistemology and Metaphysics. In: Studies in Applied Philosophy, Epistemology and Rational Ethics Volume 57, (2020), Alberto Peruzzi Silvano Zipoli Caiani Editors, Springer, Gewerbestrasse 11, 6330 Cham, Switzerland;

Earman, J. 1989. World Enough and Space-Time-Absolute versus Relational Theories of Space and Time. Bradford Books, MIT Press, Cambridge, Massachusetts London, England.

Stein, H. 1977. On Space-Time and Ontology: Extract from a Letter to Adolf Grilnbaum. In: Foundations of Space-Time Theories. Published by the University of Minnesota Press, p.374-402, v. VIII, Eds, J. Earman. C. Glymour and J. Stachel, Minnesota Studies in the Philosophy of Science, United States of America.

Pauli, W. 1958.Theory of Relativity, Pergamon Press, London, UK (este livro foi originalmente publicado em alem˜ao em 1921);

Barbour, J. 2007. The Genesis of General Relativity. In: Published by Springer, Vol.3,(p. 569-604). Dordrecht, The Netherlands.

Dirac, P. A. M. 1951. Is There an Aether. In: Nature v. 168, p.906.

A. Lyra de Oliveira, Modern Physics Letters A, Vol. 16, No. 9 (2001) 541–555, “On the Amplification of Cosmological Non-Maxwellian Fields in Curved Background”; M. Carvalho, A. Lyra de Oliveira, Foundations of Physics Letters, vol. 16, No.3, June 2003, “A New Version of the Dirac ’s Æther and its cosmological applicatios”;

Mehra, J. 1974. Einstein, Hilbert, and the Theory of Gravitation - Historical Origin of Genesis of General Relativity Theory. D. Reidel Publishing Company Dordrecht-Holland / Boston-U.S.A.

Einstein, A.; Grossmann, M. 1996 [1913]. Outline of a Generalized Theory of Relativity and of a Theory of Gravitation. In: The

Collected Papers of Albert Einstein, V. 4, 1912-1914. Princeton University Press, New Jersey. Anna Beck, Translator and Don Howard, Consultant;

Mie, G. 2007 [1914]. Remarks Concerning Einstein’s Theory of Gravitation. In: The Genesis of General Relativity, vol. 4, pp.699-728. Eds. J. Renn and M. Schemmel, C. Smeenk, C. Martin, L. Divarci, Springer.

Silberstein, L. 1918. General Relativity without the Equivalence Hypothesis. Philosophical Magazine and Journal of Science. vol.36, pages 94-128. https://doi.org/10.1080/14786440708635805.

J. D. Norton, “Einstein, Nordstrom, and the Early Demise of Scalar, Lorentz Covariant Theories of Gravitation”, em “The Genesis of General Relativity” Vol.3, 2007 (p 421, rodap´e 14) , Springer 2007, published by Springer, Dordrecht, The Netherlands. APUD.

Synge, J. L. 1960. Relativity: The General Theory. p. IX. North-Holland Publishing Company, Amsterdam.

Lorentz, H. A.; Einstein, A.; Minkowski, H.; Wey, H. 1923. The Principle of Relativity. Translated by W. Perrett and G. B. Jeffery. Dover Publications, Inc.

Prugovecki, E. 1984. Stochastic Quantum Mechanics and Quantum Spacetime. D. Reidel Publishing Company, P.O. Box 17, 3300 AA Dordrecht, Holland.

Misner, C.; W. Thorne K. S.; Wheeler, J. A.1973. Gravitation. W.H. Freeman and Compagny. San Francisco.

Tolman, R. C. 1934. Relativity Thermodynamics and Cosmology. Oxford at the Claredon Press, London.

Moller, C. 1955 [1952]. The Theory of Relativity. Oxford University Press London.

Knox, E. 2013. Effective spacetime geometry. In: Studies in History and Philosophy of Modern Physics, Vol. 44, pp.346-356.

Ohanian, H. C. 1977. What is the Principle of Equivalence. In: Am. J. Physics, v.45, N.10.

Salecker, H.; Wigner, E. P. 1958. Quantum Limitations of the Measurement of Space-Time Distances. In: Phys. Rev. v.109, p.571.

Ghins, M.; Budden, T. 2001. The Principle of Equivalence. In: Stud. Hist. Phil. Mod. Phys., Vol. 32, No. 1, pp. 3351.

Verlinde, E. “On the origin of gravity and the laws of Newton”, Journal of High Energy Physics, 29 (2011);

Reichenbach, H. 1957. The Philosophy of Space and Time. Manufactured in the United States of America Dover Publications, New York, 1957,

Jammer, M. 1993. Concepts of Space: the history of theories of space in physics - 3rd enlarged ed. Dover Publications, Inc. New York.

Leibniz, G. W. 2000. Leibniz and Samuel Clarke Correspondence. Edited, with Introduction, by Roger Ariew. Hackett Publishing Company, Inc. Indianapolis/Cambridge, USA.

Leibniz, G. W. 2007 [1710]. Theodicy, Essays on the Goodness of God, the Freedom o f Man and the Origin of Evil; Edited with an Introduction by Austin Farrer, Fellow of Trinity College.

Newtom, I. S. 1846. Mathematical Principles of Natural Philosophy; translated into english by Andrew Motte. New York published by Daniel Adee, 45 liberty street.

Mates, B. 1986. The Philosophy of Leibniz. Metaphysics and Language. Oxford University Press, New York. 1986.

Leibniz, G. W. 2004. Discours de m´etaphysique suivi de Monadologie et autres textes. ´Edition ´etablie, pr´esent´ee et annot´ee par Michel Fichant, ´Editions Gallimard.

Einstein, A. 2004 [1922] . The Meaning of Relativity. Sixth edition published in the Taylor and Francis e-Library, London.

Leibniz, G. W. 1996. New Essays on Human Understanding. Translated and edited by Peter Remnant and Jonathan Bennett. Cambridge University Press, USA.

Couturat, L. 1903. Opuscules et Fragments In´edits de Leibniz. Extraits des manuscrits de la Biblioth`eque Royale de Hanovre. F´elix Alcan, ´Editeur, Paris.

Einstein, A. 2002. The Collected Papers of Albert Einstein. Volume 7 writtings 1918-1921. English translation of selected text by Alfred Engel. Published by Princeton University Press, USA.

Leibniz, G. W. 1989. Philosophical Papers and Letters. Texts and Studies in the History of Philosophy. A Selection Translated and Edited by Kluwer, second edition. Published by Kluwer Academic Publishers, London.

Weyl, H. Space Time Matter, Dover Publications, Inc. , 1920 (USA);

Reichenbach, H. 2006. Defending Einstein. Hans Reichenbach’s Writings on Space, Time, and Motion. Edited by Steven Gimbel, Anke Walz. Cambridge University Press, USA.

Leibniz Mathematische Schriften-C. I. Gerhardt. Hannover, 1858.

Einstein, A. Einstein, 1997. The Collected Papers of Albert Einstein, Volume 6, The Berlin Years: Writings, [1914-1917], English Translation of Selected Texts, Alfred Engel Translator.

Evangelidis, B. 2018. Space and Time as Relations: The Theoretical Approach of Leibniz. In: Philosophies 3, 9;

doi:10.3390/philosophies3020009.

Hartle, J. B. 2003. Gravity-An Introduction to Einstein’s General Relativity. Addison - Wesley, New York. (2003)

Poisson, E. Will, C. M. Gravity - Newtonian, Post-Newtonian, Relativistic, Cambridge Univ Press (2014).

Schild, A. 1970. Tearing geometry to pieces: more on conformal geometry. Unpublished lecture. Princeton Univesity- Relativity Seminar.

Ehlers, J.; Pirani, F.A.E.; Schild, A. 1972. The geometry of free fall and light propagation. In: L. O’Raifeartaigh (ed.) General Relativity: Papers in Honour of J. L. Synge, pp. 63–84. Oxford : Clarendon Press.

Guigui, N.; Pennec, X. 2021. Numerical Accuracy of Ladder Schemes for Parallel Transport on Manifolds. In: Foundations of

Computational Mathematics. Volume 22, pages 757–790. https://doi.org/10.1007/s10208-021-09515-x.Acesso em: 06.04.2025.

Tolman, R. C.; Ehrenfest; P. Podolsky, B. 1931. On the Gravitational field produced by light. In: Phys. Rev. v. 17.

Kheyfets, A.; Miller, W. A.; Newton, G. A. 2000. Schild’s Ladder Transport Procedure for Arbitrary Connection. In: International Journal of Theoretical Physics, Vol. 39, No. 12.

Lorenzi, M.; Pennec, Xavier. 2013. Efficient Parallel Transport of Deformations in Time Series of Images: From Schild’s to Pole Ladder. In: Journal of Mathematical Imaging Vision. DOI 10.1007/s10851-013-0470-3. Springer Science+Business Media New York.

Landau, L. D. and Lifshitz, E. M. Classical Theory of Fields, Fourt Revised English Edition, Butterworth-Heinenann, London (1996).

James Ladyman, J. and Bigaj, T. Philosophy of Science, 77 (January 2010) pp. 117–136.

Steven French & D´ecio Krause, “Identity in Physics: A Historical Philosophical, and Formal Analysis, Claredon Press, Oxford New York (2006).

Downloads

Published

2025-08-15

How to Cite

Lyra de Oliveira, A., Andrei, A., Castro, G., Mattos, M., & Oliveira, L. (2025). Revisiting Some Leibnizian Concepts in Einstein’s Gravitational Theory. Emerging Minds Journal for Student Research, 3, P50-P67. https://doi.org/10.59973/emjsr.259

Issue

Section

Physics