Theoretical Possibility of Quantum Stabilization of Traversable Wormholes


  • Olivier Denis Information Physics Institute, Gosport, Hampshire, United Kingdom



Wormhole, Stabilized, Traversable, Dark matter, Dark energy, Casimir effect, Entropic Information Theory


In this article, we argue that we can explain quantum stabilization of Morris-Thorne traversable wormholes through quantum mechanics. We suggest that the utilization of dark matter and dark energy, conceptualized as negative mass and negative energy tied to the universe's information content, can stabilize these wormholes. This approach diverges from the original Morris-Thorne model by incorporating quantum effects, offering a credible and adequate source of the exotic matter needed to prevent wormhole collapse. We reassess the wormholes' stability and information content considering the new calculated revised vacuum energy based on the mass of bit of information. This new calculation makes the wormholes more viable within our universe's limits. Furthermore, we explore the connection between dark energy and the vacuum energy of space, highlighting the broader cosmological significance of traversable wormholes, particularly in relation to the universe's expansion. The quantum stabilization of Morris-Thorne traversable wormholes marks a pivotal advancement in the field of physics.


Morris, Michael S. & Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics. 56 (5): 395–412. Bibcode:1988AmJPh..56..395M. doi:10.1119/1.15620 DOI:

Denis, O. (2023). Informational Nature of Dark Matter and Dark Energy and the Cosmological Constant. IPI Letters, 1, 66–77. DOI:

Robert W. Philmus and David Y. Hughes. Berkeley, Anthologized in H. G. Wells (1975). H. G. Wells: Early Writings in Science and Science-Fiction. University of California.

(de) Ludwig Flamm, « Beiträge zur Einsteinschen Gravitationstheorie », Physikalische Zeitschrift, vol. 17,‎ 1916, p. 448-454.

Weyl, H. (1921). "Feld und Materie". Annalen der Physik. 65 (14): 541–563. Bibcode:1921AnP...370..541W. doi:10.1002/andp.19213701405. DOI:

Scholz, Erhard, ed. (2001). Hermann Weyl's Raum – Zeit – Materie and a General Introduction to His Scientific Work. Oberwolfach Seminars. Vol. 30. Springer. p. 199. ISBN 9783764364762. DOI:

"Hermann Weyl": entry in the Stanford Encyclopedia of Philosophy.

Einstein, A., B. Podolsky, and N. Rosen, 1935, “Can quantum-mechanical description of physical reality be considered complete?”, Physical Review, 47: 777–780 [Einstein, Podolsky, and Rosen 1935 available online]. DOI:

Misner, C. W.; Wheeler, J. A. (1957). "Classical physics as geometry". Ann. Phys. 2 (6): 525. Bibcode:1957AnPhy...2..525M. doi:10.1016/0003-4916(57)90049-0. DOI:

Jean-Pierre Luminet, « Trou noir : la porte des étoiles ?», sur France, 21 août 2019.

H. G. Ellis (1973). "Ether flow through a drainhole: A particle model in general relativity". Journal of Mathematical Physics. 14 (1): 104–118. Bibcode:1973JMP....14..104E. doi:10.1063/1.1666161. DOI:

K. A. Bronnikov (1973). "Scalar-tensor theory and scalar charge". Acta Physica Polonica. B4: 251–266.

Thorne, Kip S. (1994). Black holes and time warps: Einstein's outrageous legacy. New York. p. 493. ISBN 978-0393312768. DOI:

Denis, O. (2023). The entropy of the entangled Hawking radiation. IPI Letters, 1, 1–17. DOI:

Fewster, Christopher J.; Ken D. Olum; Michael J. Pfenning (2007). "Averaged null energy condition in spacetimes with boundaries". Physical Review D. 75 (2): 025007. arXiv:gr-qc/0609007. Bibcode:2007PhRvD..75b5007F. doi:10.1103/PhysRevD.75.025007. S2CID 119726654. DOI:

Visser, Matt (1996). "Gravitational vacuum polarization. II. Energy conditions in the Boulware vacuum". Physical Review D. 54 (8): 5116–5122. arXiv:gr-qc/9604008. Bibcode:1996PhRvD..54.5116V. doi:10.1103/PhysRevD.54.5116. PMID 10021199. S2CID 31954680. DOI:

Graham, Noah; Ken D. Olum (2007). "Achronal averaged null energy condition". Physical Review D. 76 (6): 064001. arXiv:0705.3193. Bibcode:2007PhRvD..76f4001G. doi:10.1103/PhysRevD.76.064001. S2CID 119285639. DOI:

Urban, Douglas; Ken D. Olum (2010). "Spacetime averaged null energy condition". Physical Review D. 81 (6): 124004. arXiv:1002.4689. Bibcode:2010PhRvD..81l4004U. doi:10.1103/PhysRevD.81.124004. S2CID 118312373. DOI:

Visser, Matt; Sayan Kar; Naresh Dadhich (2003). "Traversable wormholes with arbitrarily small energy condition violations". Physical Review Letters. 90 (20): 201102.1–201102.4. arXiv:gr-qc/0301003. Bibcode:2003PhRvL..90t1102V. doi:10.1103/PhysRevLett.90.201102. PMID 12785880. S2CID 8813962. DOI:

"Space and Time Warps". Archived from the original on 2012-02-10. Retrieved 2010-11-11.

Morris, Michael; Thorne, Kip; Yurtsever, Ulvi (1988). "Wormholes, Time Machines, and the Weak Energy Condition" (PDF). Physical Review Letters. 61 (13): 1446–1449. Bibcode:1988PhRvL..61.1446M. doi:10.1103/PhysRevLett.61.1446. PMID 10038800. DOI:

Sopova; Ford (2002). "The Energy Density in the Casimir Effect". Physical Review D. 66 (4): 045026. arXiv:quant-ph/0204125. Bibcode:2002PhRvD..66d5026S. CiteSeerX doi:10.1103/PhysRevD.66.045026. S2CID 10649139. DOI:

Ford; Roman (1995). "Averaged Energy Conditions and Quantum Inequalities". Physical Review D. 51 (8): 4277–4286. arXiv:gr-qc/9410043. Bibcode:1995PhRvD..51.4277F. doi:10.1103/PhysRevD.51.4277. PMID 10018903. S2CID 7413835. DOI:

Olum (1998). "Superluminal travel requires negative energies". Physical Review Letters. 81 (17): 3567–3570. arXiv:gr-qc/9805003. Bibcode:1998PhRvL..81.3567O. doi:10.1103/PhysRevLett.81.3567. S2CID 14513456. DOI:

Newfound Wormhole Allows Information to Escape Black Holes". Quanta Magazine. 23 October 2017.




How to Cite

Denis, O. (2024). Theoretical Possibility of Quantum Stabilization of Traversable Wormholes. IPI Letters, 2(1), 3–8.