The Scaling Entropy-Area Thermodynamics and the Emergence of Quantum Gravity

Authors

  • Olivier Denis Information Physics Institute, Gosport, Hampshire, United Kingdom

DOI:

https://doi.org/10.59973/ipil.126

Keywords:

Quantum gravity, Bekenstein-Hawking entropy, Bekenstein bound, von Neumann entropy, Hawking radiation, Ryu-Takayanagi conjecture, Surface gravity, Gravitational fine-grained entropy, Entropic information theory, Scaling Entropy-Area Thermodynamic System

Abstract

This article introduces the “Scaling Entropy-Area Thermodynamics” (SEAT), a unified framework
claiming that all gravitational systems’ entropy scales with their surface, rather their volume, allowing gravity to be explained as an emergent phenomenon. This approach reveals how entropy, information, spacetime geometry and quantum mechanics are intrinsically linked fromnotions such as von Neumann entropy, Bekenstein bound and Ryu-Takayanagi conjecture. With the help of new entropy formulations involving surface gravity, SEAT illustrates how gravitational entropy explains gravitational systems from structured information at the boundary surface. SEAT not only solves the black hole information paradox by suggesting that they evolve, as their entropy decrease, towards order, with information preserved in a progressively organized manner and emitted through the entangled Hawking radiation, but, offers by the extending of the “entropy-area” relation to all gravitational systems, to comprehend, in a unified approach, the emergent nature of gravity from how information is encoded and organized on the boundary surface.

References

Hawking, S. W. (1976). ”Breakdown of predictability in gravitational collapse”. Physical Review D. 14 (10): 2460–2473. Bibcode: 1976PhRvD..14.2460H. doi:10.1103/PhysRevD.14.2460. DOI: https://doi.org/10.1103/PhysRevD.14.2460

Denis, O. (2023). The entropy of the entangled Hawking radiation. IPI Letters, 1, 1–17. https://doi.org/10.59973/ipil.9 DOI: https://doi.org/10.59973/ipil.9

Misner, Charles W., Kip S. Thorne, and John Archibald Wheeler. Gravitation. W. H. Freeman and Company, 1973.

Von Neumann, John (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer. ISBN 3-540-59207-5.; Von Neumann, John (1955). Mathematical Foundations of Quantum Mechanics. Princeton University Press. ISBN 978-0-691-02893-4.

Bekenstein, Jacob D. (1981). ”Universal upper bound on the entropy-to-energy ratio for bounded systems” (PDF). Physical Review D. 23 (2): 287–298. Bibcode:1981PhRvD..23..287B. doi:10.1103/PhysRevD.23.287. S2CID 120643289. DOI: https://doi.org/10.1103/PhysRevD.23.287

Bekenstein, Jacob D. (2005). ”How does the Entropy/Information Bound Work?”. Foundations of Physics. 35 (11): 1805–1823. arXiv:quant-ph/0404042. Bibcode:2005FoPh...35.1805B. doi:10.1007/s10701-005-7350-7. S2CID 118942877 DOI: https://doi.org/10.1007/s10701-005-7350-7

Bekenstein, Jacob D. (April 1973). ”Black holes and entropy”. Physical Review D. 7 (8): 2333–2346. Bibcode:1973PhRvD...7.2333B. doi:10.1103/PhysRevD.7.2333. S2CID 122636624 DOI: https://doi.org/10.1103/PhysRevD.7.2333

Hawking, Stephen W. (1974-03-01). ”Black hole explosions?”. Nature. 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0. ISSN 1476-4687. S2CID 4290107 DOI: https://doi.org/10.1038/248030a0

Hawking, Stephen W. (1975). ”Particle creation by black holes”. Communications in Mathematical Physics. 43 (3): 199–220. Bibcode: 1975CMaPh..43..199H. doi:10.1007/BF02345020. S2CID 55539246. DOI: https://doi.org/10.1007/BF02345020

Ryu, Shinsei; Takayanagi, Tadashi. “Holographic Derivation of Entanglement Entropy from AdS/CFT.” Phys.Rev.Lett.96:181602,2006 Available: https://arxiv.org/abs/hep-th/0603001 DOI: https://doi.org/10.1103/PhysRevLett.96.181602

Casini H. “Relative entropy and the Bekenstein bound.” Class Quantum Grav. 2008;25(20):205021. doi: 10.1088/0264-9381/25/20/205021. arXiv:0804.2182 DOI: https://doi.org/10.1088/0264-9381/25/20/205021

Bousso, Raphael (1999). ”Holography in general spacetimes”. Journal of High Energy Physics. 1999 (6): 028. arXiv:hep-th/9906022. Bibcode:1999JHEP...06..028B. doi:10.1088/1126-6708/1999/06/028. S2CID 119518763. DOI: https://doi.org/10.1088/1126-6708/1999/06/028

Bousso, Raphael (1999). ”A covariant entropy conjecture”. Journal of High Energy Physics. 1999 (7): 004. arXiv:hep-th/9905177. Bibcode:1999JHEP...07..004B. doi:10.1088/1126-6708/1999/07/004. S2CID 9545752. DOI: https://doi.org/10.1088/1126-6708/1999/07/004

Bousso, Raphael (2000). ”The holographic principle for general backgrounds”. Classical and Quantum Gravity. 17 (5): 997–1005. arXiv:hep-th/9911002. Bibcode:2000CQGra..17..997B. doi:10.1088/0264-9381/17/5/309. S2CID 14741276. DOI: https://doi.org/10.1088/0264-9381/17/5/309

Bekenstein, Jacob D. (2000). ”Holographic bound from second law of thermodynamics”. Physics Letters B. 481 (2–4): 339–345. arXiv:hep-th/0003058. Bibcode:2000PhLB..481..339B. doi:10.1016/S0370-2693(00)00450-0. S2CID 119427264. DOI: https://doi.org/10.1016/S0370-2693(00)00450-0

Bousso, Raphael (2002). ”The holographic principle” (PDF). Reviews of Modern Physics. 74 (3): 825–874. arXiv:hep-th/0203101. Bibcode:2002RvMP...74..825B. doi:10.1103/RevModPhys.74.825. S2CID 55096624. DOI: https://doi.org/10.1103/RevModPhys.74.825

Bekenstein, Jacob D. ”Information in the Holographic Universe: Theoretical results about black holes suggest that the universe could be like a gigantic hologram”, Scientific American, Vol. 289, No. 2 (August 2003), pp. 58-65. DOI: https://doi.org/10.1038/scientificamerican0803-58

Bousso, Raphael; Flanagan, ´ Eanna ´ E.; Marolf, Donald (2003). ”Simple sufficient conditions for the generalized covariant entropy bound”. Physical Review D. 68 (6): 064001. arXiv:hep-th/0305149. Bibcode:2003PhRvD..68f4001B. doi:10.1103/PhysRevD.68.064001.S2CID 119049155. DOI: https://doi.org/10.1103/PhysRevD.68.064001

Bekenstein, Jacob D. (2004). ”Black holes and information theory”. Contemporary Physics. 45 (1): 31–43. arXiv:quant-ph/0311049. Bibcode:2004ConPh..45...31B. doi:10.1080/00107510310001632523. S2CID 118970250. DOI: https://doi.org/10.1080/00107510310001632523

Tipler, F. J. (2005). ”The structure of the world from pure numbers” (PDF). Reports on Progress in Physics. 68 (4): 897–964. arXiv:0704.3276. Bibcode:2005RPPh...68..897T. doi:10.1088/0034-4885/68/4/R04. S2CID 119620977. DOI: https://doi.org/10.1088/0034-4885/68/4/R04

Bekenstein, A. (1972). ”Black holes and the second law”. Lettere al Nuovo Cimento. 4 (15): 99–104. doi:10.1007/BF02757029. S2CID120254309. DOI: https://doi.org/10.1007/BF02757029

Charlie Rose: A conversation with Dr. Stephen Hawking and Lucy Hawking Archived March 29, 2013, at the Wayback Machine

A Brief History of Time, Stephen Hawking, Bantam Books, 1988.

Vopson M.M., The mass-energy-information equivalence principle. AIP Adv. 2019;9(9):095206. doi:https://doi.org/10.1063/1.5123794 DOI: https://doi.org/10.1063/1.5123794

Vopson M.M., Experimental protocol for testing the mass–energy–information equivalence principle. AIP Advances. 2022;12:035311. doi:https://doi.org/10.1063/5.0087175 DOI: https://doi.org/10.1063/5.0087175

de Broglie, Louis.“La thermodynamique ≪ cach´ee ≫ des particules”, Annales de l’I. H. P., section A, tome 1, no 1 (1964), p. 1-19, 1964. DOI: https://doi.org/10.1007/BF00668827

Almheiri A, Hartman T, Maldacena J M, Shaghoulian E, Tajdini A.” The entropy of Hawking radiation.” Rev. Mod. Phys. 93, 035002. Available:https://arxiv.org/abs/2006.06872v1. DOI: https://doi.org/10.1103/RevModPhys.93.035002

Bousso, Raphael, Penington,Geoff. “Entanglement Wedge For Gravitating Regions.“ Sept 2022. Phys. Rev. D 107, 086002. Available: https://arxiv.org/abs/2208.04993 DOI: https://doi.org/10.1103/PhysRevD.107.086002

Downloads

Published

2024-11-27

How to Cite

Denis, O. (2024). The Scaling Entropy-Area Thermodynamics and the Emergence of Quantum Gravity. IPI Letters, 2(3), 23–34. https://doi.org/10.59973/ipil.126

Issue

Section

Letters