Destroying the Multiverse: Entropy Mechanics in Causal Diamonds

Authors

DOI:

https://doi.org/10.59973/ipil.269

Keywords:

Quantum Measurement Problem, Entropy Partition;, Wave Function Collapse, Quantum Decoherence, Many Worlds Interpretation, Black Hole Information Paradox, Dimensional Structure

Abstract

We present a geometric framework that provides a pathway toward resolving quantum measurement through thermodynamic entropy mechanics within causal diamond structures. Entropy mechanics demonstrates that quantum measurement represents the conversion of coherent entropy states (accessible quantum information) into decoherent entropy states (thermodynamically inaccessible information) at precise spacetime boundaries defined by light cone intersections. The universal Quantum-Thermodynamic Entropy Partition (QTEP) ratio Scoh/|Sdecoh| ≈ 2.257 emerges from von Neumann entropy analysis and is characterized by the fundamental information processing rate γ governing all quantum-to-classical transitions without requiring additional empirical input beyond standard quantum mechanics. We add definition to fundamental information units: ebits (entanglement bits) and obits (observational bits), resolving dimensional inconsistencies between thermodynamic entropy and discrete information content. Crucially, causal diamond geometry - the intersection of future and past light cones - provides calculable spacetime boundaries where entropy conversion occurs, with the universal rate γ serving as the fundamental geodesic parameter governing all timelike paths. This architecture features holographic screens of area A(p, q) encoding information and 4-volumes V(p, q) constraining processing capacity. Entropy mechanics offers a substantive refutation of the Many Worlds Interpretation by demonstrating that quantum measurement creates definite outcomes through negentropy generation rather than reality multiplication. The single causal diamond structure provides sufficient geometric and thermodynamic resources for complete energy and information conservation. Gravity emerges as bulk manifestation of information processing optimization on holographic screens, while black holes represent extreme coherent entropy organizations. This framework provides concrete, testable predictions grounded in geometric and
thermodynamic principles, with the fundamental insight that quantum measurement dynamics are intrinsically connected to spacetime structure through the universal information processing rate γ governing timelike geodesics.

References

J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement (Princeton University Press, 1983). DOI: https://doi.org/10.1515/9781400854554

N. Bohr, “The Quantum Postulate and the Recent Development of Atomic Theory,” Nature 121, 580 (1928). doi:10.1038/121580a0 DOI: https://doi.org/10.1038/121580a0

H. Everett III, “’Relative State’ Formulation of Quantum Mechanics,” Rev. Mod. Phys. 29, 454 (1957). doi:10.1103/RevModPhys.29.454 DOI: https://doi.org/10.1103/RevModPhys.29.454

G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D 34, 470 (1986). doi:10.1103/PhysRevD.34.470 DOI: https://doi.org/10.1103/PhysRevD.34.470

N. Margolus and L. B. Levitin, “The maximum speed of dynamical evolution,” Physica D 120, 188 (1998). doi:10.1016/S0167- DOI: https://doi.org/10.1016/S0167-2789(98)00054-2

(98)00054-2

W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” Rev. Mod. Phys. 75, 715 (2003).

doi:10.1103/RevModPhys.75.715 DOI: https://doi.org/10.1103/RevModPhys.75.715

B. Weiner, Little Bangs: the Holographic Nature of Black Holes, IPI Letters 3(3), 34–54 (2025). doi:10.59973/ipil.177 DOI: https://doi.org/10.59973/ipil.177

B. Weiner, ATLAS Shrugged: Resolving Experimental Tensions in Particle Physics Through Holographic Theory, IPI Letters 3(4), 13–24 (2025). doi:10.59973/ipil.222 DOI: https://doi.org/10.59973/ipil.222

B. Weiner, Holographic Information Rate as a Resolution to Contemporary Cosmological Tensions, IPI Letters 3(2), 8–22 (2025). doi:10.59973/ipil.170 DOI: https://doi.org/10.59973/ipil.170

G. W. Gibbons and S. N. Solodukhin, “The geometry of small causal diamonds,” Phys. Rev. D 76, 044009 (2007).

doi:10.1103/PhysRevD.76.044009 DOI: https://doi.org/10.1103/PhysRevD.76.044009

M. M. Vopson, Is gravity evidence of a computational universe? AIP Advances 15(4), 045035 (2025). doi:10.1063/5.0264945 DOI: https://doi.org/10.1063/5.0264945

Downloads

Published

2025-11-28

How to Cite

Weiner, B. (2025). Destroying the Multiverse: Entropy Mechanics in Causal Diamonds. IPI Letters, 3(5), 26–42. https://doi.org/10.59973/ipil.269

Issue

Section

Letters