Theoretical Approaches to Solving the Shortest Vector Problem in NP-Hard Lattice-Based Cryptography with Post-SUSY Theories of Quantum Gravity in Polynomial Time by Orch-Or

Authors

  • Trevor Nestor Information Physics Institute, Washington, Redmond

DOI:

https://doi.org/10.59973/ipil.171

Keywords:

NTRU, Shortest Vector Problem, Learning with Errors Problem, Riemann Hypothesis, Loop Quantum Gravity, Orch-Or Theory, Microtubules, Turbulence, Navier-Stokes Equations, Majorana zero modes, Hilber-Polya Conjecture, Magnetohydrodynamic Instabilities

Abstract

The Shortest Vector Problem (SVP) is a cornerstone of lattice-based cryptography, underpinning the security of numerous cryptographic schemes like NTRU. Given its NP-hardness, efficient solutions to SVP have profound implications for both cryptography and computational complexity theory. This paper presents an innovative framework that integrates concepts from quantum gravity, non-commutative geometry, spectral theory, and post-supersymmetry (post-SUSY) particle physics to address SVP. By mapping high-dimensional lattice points to spinfoam networks and by means of Hamiltonian engineering, it is theoretically possible to devise new algorithms that leverage the interactions topologically protected Majorana fermion
particles have with the gravitational field through the spectral action principle to loop through these spinfoam networks where SVP vectors could then be encoded onto the spectrum of the corresponding Dirac-like dilation operators within the system. We establish a novel approach that leverages post-SUSY physics and theories of quantum gravity to achieve algorithmic speedups beyond those expected by conventional quantum computers. This interdisciplinary methodology not only proposes potential polynomial-time algorithms for SVP, but also bridges gaps between theoretical physics and cryptographic applications, providing further insights into the Riemann Hypothesis (RH) and the Hilbert-P ´olya Conjecture. Possible directions for experimental realization through biologically inspired hardware or biological tissues by orchestrated objective reduction (Orch-Or) theory are discussed.

References

D. Micciancio. The shortest vector problem is NP-hard to approximate to within some constant. SIAM Journal on Computing,

(6):2008–2035, March 2001. doi:10.1137/S0097539700373039.

David Micciancio. Shortest Vector Problem. In: H.C.A. van Tilborg (ed.), Encyclopedia of Cryptography and Security. Springer, Boston, MA, 2005. https://doi.org/10.1007/0-387-23483-7_392

G. Etesi and I. Nemeti. Non-Turing computations via Malament-Hogarth space-times. arXiv:gr-qc/0104023 [gr-qc], 2002. Available at https://arxiv.org/abs/gr-qc/0104023.

P. D. Welch. The extent of computation in Malament-Hogarth spacetimes. Unpublished manuscript, School of Mathematics,

University of Bristol, Bristol, England.

L. Hardy. Quantum gravity computers: On the theory of computation with indefinite causal structure. arXiv preprint, arXiv:quant-ph/0701019, 2007. Submitted on 5 Jan 2007. doi:10.48550/arXiv.quant-ph/0701019; related DOI:10.1007/978-1-4020-9107-0 21.

P. Caputa and J. M. Magan. Quantum Computation as Gravity. Phys. Rev. Lett., 122:231302, 2019. Submitted on 12 Jul 2018 (v1), last revised 26 Feb 2019 (v2). arXiv:1807.04422 [hep-th] (or arXiv:1807.04422v2 for this version). doi:10.48550/arXiv.1807.04422; related DOI: 10.1103/PhysRevLett.122.231302.

T. D. Kieu. Computing the noncomputable. Contemporary Physics, 44(1):51–71, 2003. doi:10.1080/0010751031000073915.

L. Hardy. Quantum Gravity Computers: On the Theory of Computation with Indefinite Causal Structure. In Quantum Reality,

Relativistic Causality, and Closing the Epistemic Circle (pp. 379–401), 2009. Springer Netherlands. doi:10.1007/978-1-4020-9107-0-21.

M. Han and C. Rovelli. Spinfoam Fermions: PCT Symmetry, Dirac Determinant, and Correlation Functions. arXiv preprint

arXiv:1101.3264v2 [gr-qc], March 6, 2013. Centre de Physique Th´eorique1, CNRS-Luminy Case 907, F-13288 Marseille, France.

https://arxiv.org/abs/1101.3264v2

Ricardo Alvarez, Nick Sims, Christian Servin, Martine Ceberio, and Vladik Kreinovich. If Space-Time Is Discrete, We May Be

Able to Solve NP-Hard Problems in Polynomial Time. Proceedings of the Conference on Computational Challenges, 2019. https:

//api.semanticscholar.org/CorpusID:199532088

Scott Aaronson. NP-Complete Problems and Physical Reality. Quantum Information and Computation, 4(4):429–442, 2004. https://doi.org/10.1007/s11128-004-4972-9

P. Safronov. Hyperk¨ahler manifolds. Talk at 2011 Talbot Workshop, 2011. https://math.mit.edu.

Carlo Rovelli and Francesca Vidotto. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and

Spinfoam Theory. Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781107706910

Valentin Bonzom. spinfoam models for quantum gravity from lattice path integrals. Phys. Rev. D, 80(6):064028, 2009. https:

//link.aps.org/doi/10.1103/PhysRevD.80.064028

Alain Connes. Noncommutative Geometry. Academic Press, 2006.

S. Tosto. The Three Worlds of Penrose: Strings or Rotating Vectors? Journal of Applied Mathematics and Physics, 8, 1665–1705, 2020. doi:10.4236/jamp.2020.89127. URL: https://doi.org/10.4236/jamp.2020.89127

Piet Hut, Mark Alford, and Max Tegmark. On Math, Matter and Mind. Foundations of Physics, Submitted on October 20, 2005; Accepted December 21, 2005; Published January 15, 2006. Institute for Advanced Study, Princeton, NJ; Washington University, St. Louis, MO; MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA. https://arxiv.org/abs/physics/0510188

Alexei Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003. https://doi.org/10.1016/S0003-4916(02)01240-3

D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, et al. Milestones toward Majorana-based quantum computing. Physical Review X, 6(3):031016, 2016. doi:10.1103/PhysRevX.6.031016.

C. Knapp, M. Zaletel, D. E. Liu, M. Cheng, P. Bonderson, and C. Nayak. The Nature and Correction of Diabatic Errors in Anyon Braiding. Phys. Rev. X, 6(4):041003, October 2016. https://doi.org/10.1103/PhysRevX.6.041003.

A. Ziesen, F. Hassler, and A. Roy. Topological ordering in the Majorana toric code. Phys. Rev. B, 100:104508, 2019. JARA Institute for Quantum Information, RWTH Aachen University, and Technische Universit¨at M ¨unchen. https://doi.org/10.1103/PhysRevB.100.104508.

A. Romito and Y. Gefen. Ubiquitous nonlocal entanglement with Majorana zero modes. Physical Review Letters, 119(15):157702, 2017. doi:10.1103/PhysRevLett.119.157702.

M. Ippoliti, M. Rizzi, V. Giovannetti, and L. Mazza. Quantum memories with zero-energy Majorana modes and experimental

constraints. Physical Review A, 93:062325, 2016. doi:10.1103/PhysRevA.93.062325.

V. Subramanyan, K. Kirkpatrick, S. Vishveshwara, and S. Vishveshwara. Are microtubules electron-based topological insulators? Europhysics Letters, 143, 2023. doi:10.1209/0295-5075/acec94.

K. H. Pribram. Brain and perception: Holonomy and structure in figural processing. Lawrence Erlbaum Associates, 1991.

A. Nishiyama, S. Tanaka, J. A. Tuszynski, and R. Tsenkova. Holographic Brain Theory: Super-Radiance, Memory Capacity and

Control Theory. International Journal of Molecular Sciences, 25(4):2399, 2024. doi:10.3390/ijms25042399. PMID: 38397075; PMCID: PMC10889214.

P Zarkeshian, T Kergan, R Ghobadi, W Nicola and C Simon. Photons guided by axons may enable backpropagation-based learning in the brain. Scientific Reports, 12, 20720, 2022. https://doi.org/10.1038/s41598-022-24871-6

S. Pai et al. Experimentally Realized In Situ Backpropagation for Deep Learning in Nanophotonic Neural Networks. arXiv preprint, 2022. arXiv:2206.13559.

B. Dang, S. Chittamuru, S. Pasricha, S. Mahapatra, and D. Sahoo. BPLight-CNN: A Photonics-based Backpropagation Accelerator for Deep Learning. arXiv preprint, 2021. arXiv:2106.14829.

J. Spall, X. Guo, and A. I. Lvovsky. Training neural networks with end-to-end optical backpropagation. Advanced Photonics, 7(1):016004, 2025. doi:10.1117/1.AP.7.1.016004.

A. Rahmansetayesh, A. Ghazizadeh, and F. Marvasti. The underlying mechanisms of alignment in error backpropagation through arbitrary weights. Neurocomputing, 611:128587, 2025. doi:10.1016/j.neucom.2024.128587.

G.G. Globus and C.P. O’Carroll. Nonlocal neurology: Beyond localization to holonomy. Medical Hypotheses, 75(5):425–432, 2010. https://doi.org/10.1016/j.mehy.2010.04.012 https://www.sciencedirect.com/science/article/pii/S0306987710001866

G. Shkliarevsky. The Emperor With No Clothes: Chomsky Against ChatGPT. ResearchGate, 2023. DOI: 10.13140/RG.2.2.32321.43369.

Michael V. Berry and Jonathan P. Keating. A compact hamiltonian with the same asymptotic mean spectral density as the Riemann zeros. Journal of Physics A: Mathematical and General, 29, L1, 1996. https://doi.org/10.1088/0305-4470/29/5/001

Peter Baar and David Pfaffle. Dirac-like operators in Riemannian Geometry. Springer, 2003.

German Sierra. The H = xp Model Revisited and the Zeros of the Riemann Zeta Function. In Trends in Quantum Mechanics, edited by H. Bergeron et al., American Institute of Physics, 2001. https://arxiv.org/abs/hep-th/0101089

Connes, A. Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Sel. math., New ser. 5, 29 (1999)., https://doi.org/10.1007/s000290050042

Germ´an Sierra. The Riemann zeros as energy levels of a Dirac fermion in a potential built from the prime numbers in Rindler spacetime. Instituto de F´ısica Te´orica, UAM-CSIC, Madrid, Spain, June 18, 2018. https://arxiv.org/abs/1404.4252

Panagiotis Betzios, Nava Gaddam, and Olga Papadoulaki. Black holes, quantum chaos, and the Riemann hypothesis. SciPost Physics Core, 4:032, 2021. https://scipost.org/10.21468/SciPostPhysCore.4.4.032

C. W. J. Beenakker. Random-matrix theory of Majorana fermions and topological superconductors. Rev. Mod. Phys., 87(3):1037–1066, September 2015. https://doi.org/10.1103/RevModPhys.87.1037.

J.B. Conrey. L-Functions and Random Matrices. In: B. Engquist and W. Schmid (eds.), Mathematics Unlimited — 2001 and Beyond. Springer, Berlin, Heidelberg, 2001. https://doi.org/10.1007/978-3-642-56478-9_14

Julio C. Andrade. Hilbert–P ´olya Conjecture, Zeta–Functions and Bosonic Quantum Field Theories. Institute for Computational and Experimental Research in Mathematics (ICERM), Brown University, Providence, RI, USA, 2013. [Submitted on 15 May 2013].

Zeqian Chen. Non-Abelian observable-geometric phases and the Riemann zeros. Proceedings of the Theoretical Physics Conference, 2024. https://api.semanticscholar.org/CorpusID:268732758

Praveen Sriram. Random-Matrix Theory of Quantum Transport in Topological Superconductors. Full report, Submitted as coursework for PH470, Stanford University, Spring 2020.

Haining Pan, Jay Deep Sau, and Sankar Das Sarma. Random matrix theory for the robustness, quantization, and end-to-end

correlation of zero-bias conductance peaks in a class D ensemble. Phys. Rev. B, 106(11):115413, 2022. https://doi.org/10.1103/

PhysRevB.106.115413

Pragya Shukla. Signatures of random matrices in physical systems. Physica A: Statistical Mechanics and its Applications, 315(1–2):53–62, 2002. https://doi.org/10.1016/S0378-4371(02)01257-8

Zhi-Cheng Yang, Konstantinos Meichanetzidis, Stefanos Kourtis, and Claudio Chamon. Scrambling via braiding of nonabelions. Phys. Rev. B, 99:045132, 2019. https://doi.org/10.1103/PhysRevB.99.045132

Freeman J. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I–III. Journal of Mathematical Physics, 3, 140, 1962.

Jeffrey C. Y. Teo and C. L. Kane. Majorana Fermions and Non-Abelian Statistics in Three Dimensions. Phys. Rev. Lett., 104, 046401 (2010). https://doi.org/10.1103/PhysRevLett.104.046401

Fabrizio Tamburini and Ignazio Licata. Majorana quanta, string scattering, curved spacetimes and the Riemann Hypothesis. Physica Scripta, 96(12):125276, 2021. https://doi.org/10.1088/1402-4896/ac4553

V. Chua, K. Laubscher, J. Klinovaja, and D. Loss. Majorana zero modes and their bosonization. Phys. Rev. B, 102(15):155416, October 2020. https://doi.org/10.1103/PhysRevB.102.155416.

Michael V. Berry. Riemann zeros and eigenvalues of chaotic Hamiltonians. Physics Letters A, 310(1-2):77-80, 2003. https://doi.org/10.1016/S0375-9601(03)00198-5

A. M. Selvam. Fractal space-time fluctuations: A signature of quantumlike chaos in dynamical systems. Deputy Director (Retired), Indian Institute of Tropical Meteorology, Pune, India, Email: amselvam@eth.net, Website: http://www.geocities.com/amselvam, http://amselvam.tripod.com/index.htm.

M. Niedermaier. The asymptotic safety scenario in quantum gravity: an introduction. Classical and Quantum Gravity, 24(18), R171–R230, 2007. https://doi.org/10.1088/0264-9381/24/18/r01

J. Ambjørn, A. G ¨orlich, J. Jurkiewicz, and R. Loll. Nonperturbative quantum de Sitter universe. Physical Review D, 78(6), 063544, 2008. https://doi.org/10.1103/PhysRevD.78.063544

Daniel F. Litim. Renormalization group and the Planck scale. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1946), 2759–2778, 2011. https://doi.org/10.1098/rsta.2011.0103

German Sierra and Javier Rodriguez-Laguna. The Riemann zeros and a cyclic Renormalization Group. Physical Review Letters, 106, 200201, 2011. https://doi.org/10.1103/PhysRevLett.106.200201

Emili Elizalde. Ten Physical Applications of Spectral Zeta Functions. Springer, 1995.

Daniel L. Jafferis and Silviu S. Pufu. Field theory dualities and the renormalization group. In New Frontiers in Fields and Strings, World Scientific, 2017. https://arxiv.org/abs/1705.01107

Slava El-Showk et al. Solving the 3D Ising Model with the Conformal Bootstrap. Physical Review D, 86, 025022, 2012. https:

//doi.org/10.1103/PhysRevD.86.025022

Carl M. Bender. Making sense of non-Hermitian Hamiltonians. Reports on Progress in Physics, 70, 947–1018, 2007. https://doi.org/10.1088/0034-4885/70/6/R03

Martin R. Zirnbauer. Riemannian symmetric superspaces and their origin in random-matrix theory. Journal of Mathematical Physics, 37, 4986–5018, 1996. https://doi.org/10.1063/1.531675

R. He, M.-Z. Ai, J.-M. Cui, Y.-F. Huang, Y.-J. Han, C.-F. Li, T. Tu, C. E. Creffield, G. Sierra, and G.-C. Guo. Identifying the Riemann zeros by periodically driving a single qubit. arXiv preprint arXiv:1903.07819 [quant-ph], 2019. URL: https://arxiv.org/abs/1903.07819.

R. He, M.-Z. Ai, J.-M. Cui, et al. Riemann zeros from Floquet engineering a trapped-ion qubit. npj Quantum Information, 7:109, 2021. doi:10.1038/s41534-021-00446-7. URL: https://doi.org/10.1038/s41534-021-00446-7.

J. M. McCaw. Quantum Chaos: Spectral Analysis of Floquet Operators. Ph.D. Thesis, School of Physics, The University of Melbourne, Australia, December 2004.

M. Trif and Y. Tserkovnyak. Resonantly tunable Majorana polariton in a microwave cavity. Physical Review Letters, 109(25):257002, 2012. doi:10.1103/PhysRevLett.109.257002.

Harel Primack, Holger Schanz, Uzy Smilansky, and Itamar Ussishkin. Random matrix theory and chaotic scattering in supercon-ducting devices. Physical Review B, 52, 12176, 1995. https://doi.org/10.1103/PhysRevB.52.12176

Kay Richter, Denis Ullmo, and R. A. Jalabert. Classical and quantum dynamics in a focusing billiard. Physical Review A, 54, 5219–5229, 1996. https://doi.org/10.1103/PhysRevA.54.5219

Roberto Casalbuoni. Majorana and the Infinite Component Wave Equations. Dipartimento di Fisica dell’Universita’ di Firenze and Sezione INFN, Sesto Fiorentino (FI), Italy; Galileo Galilei Institute for Theoretical Physics, Firenze, Italy, October 23, 2006. https://arxiv.org/abs/hep-th/0610252

Bombieri E. New progress on the zeta function: From old conjectures to a major breakthrough. Proc Natl Acad Sci USA, 116(23):11085-11086 (2019). doi:10.1073/pnas.1906804116.

Lian-E Lu, Jian-Zhuang Wu and Yong-Hong Ma Chaos generation of superconducting quantum bits coupled with LC resonant circuits. Phys. Scr. 99 065533 (2024). doi:10.1088/1402-4896/ad468f

Alain Connes and Matilde Marcolli. Noncommutative Geometry, Quantum Fields and Motives. American Mathematical Society, 2019. https://bookstore.ams.org/gsm-193

Martin Reuter. Quantum Einstein Gravity in the Asymptotic Safety Scenario. Classical and Quantum Gravity, 22(23):4889, 2005. https://doi.org/10.1088/0264-9381/22/23/010

Kin-ya Oda and Masatoshi Yamada. Non-minimal coupling in Higgs-Yukawa model with asymptotically safe gravity. arXiv preprint arXiv:1510.03734v5 [hep-th], 2017. https://arxiv.org/abs/1510.03734v5

J. C. Baez. 4-Dimensional BF Theory with Cosmological Term as a Topological Quantum Field Theory. Department of Mathematics, University of California, Riverside, CA 92521. Email: baez@math.ucr.edu.

M. V. Berry and J. P. Keating. The Riemann Zeros and Eigenvalue Asymptotics. SIAM Review, 41(2):236–266, 1999. https:

//doi.org/10.1137/S0036144598347497

Edward Witten. Anti de Sitter space and holography. Advances in Theoretical and Mathematical Physics, 2(2):253–291, 1998. https: //doi.org/10.4310/ATMP.1998.v2.n2.a1

N. Iizuka and S. K. Sake. A note on Centaur geometry – probing IR de Sitter spacetime holography. arXiv preprint, arXiv:2501.02614, 2025. https://arxiv.org/abs/2501.02614

D. Anninos and D. M. Hofman. Infrared realization of dS2 in AdS2. Classical and Quantum Gravity, 35(8), 085003, 2018. https://doi.org/10.1088/1361-6382/aab143

S. E. Aguilar-Gutierrez, E. Bahiru, and R. Esp´ındola. The centaur-algebra of observables. arXiv preprint, arXiv:2307.04233, 2024. https://arxiv.org/abs/2307.04233

Y. Bisabr and F. Ahmadi. Deflation of vacuum energy during inflation due to Bulk-Brane interaction. Journal of Cosmology and Astroparticle Physics, 2020(10), 050, 2020. https://doi.org/10.1088/1475-7516/2020/10/050

C. P. Burgess, J. M. Cline, H. Stoica, and F. Quevedo. Inflation in Realistic D-Brane Models. Journal of High Energy Physics, 2004(09), 033, 2004. https://doi.org/10.1088/1126-6708/2004/09/033

Muxin Han and Hongguang Liu. Loop quantum gravity on dynamical lattice and improved cosmological effective dynamics with inflation. Phys. Rev. D, 104(2):024011, 2021. https://doi.org/10.1103/PhysRevD.104.024011

Juan Maldacena. The large N limit of superconformal field theories and supergravity. Advances in Theoretical and Mathematical Physics, 2(2):231–252, 1998. https://doi.org/10.4310/ATMP.1998.v2.n2.a2

Yiming Chen and Gustavo J. Turiaci. Spin-Statistics for Black Hole Microstates. arXiv preprint, arXiv:2309.03478 [hep-th], October 2023. Stanford Institute for Theoretical Physics, Stanford, CA, USA; Physics Department, Princeton University, NJ, USA; Physics Department, University of Washington, Seattle, WA, USA; Institute for Advanced Study, Princeton, NJ, USA. https://arxiv.org/abs/2309.03478

Georgios Betzios, Nima Gaddam, and Orestis Papadoulaki. The Black Hole S-Matrix from Quantum Mechanics. Journal of High Energy Physics, 11, 131, 2021. https://doi.org/10.1007/JHEP11(2021)131

S. Kachru and A. Tripathy. The Hodge-Elliptic Genus, Spinning BPS States, and Black Holes. Communications in Mathematical Physics, 355:245–259, October 2017. https://doi.org/10.1007/s00220-017-2910-1

Jack Gilchrist. Modularity, Supersymmetric Black Holes and The Ramanujan Tau Function. Supervised by Aradhita Chattopadhyaya, School of Theoretical Physics, Dublin Institute for Advanced Studies, August 7, 2023. In collaboration with Anito Marcarelli, Eliza Somervie, and Rachel Ferguson. https://www.dias.ie/wp-content/uploads/2023/08/Jack-Paper.pdf

A. Einstein, B. Podolsky, and N. Rosen. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev., 47:777–780, 1935. https://doi.org/10.1103/PhysRev.47.777.

R. M. Santilli. Nine Theorems of Inconsistency in GRT with Resolutions via Isogravitation. arXiv, 2006. https://arxiv.org/abs/

physics/0601129.

Hiroshi Ooguri and Cumrun Vafa. A swampland criterion for AdS vacua. arXiv preprint arXiv:1810.04283, 2018. https://arxiv.

org/abs/1810.04283

Cumrun Vafa. The string landscape and the swampland. arXiv preprint arXiv:hep-th/0509212, 2005. https://arxiv.org/abs/hep-th/0509212

Rodolfo Gambini and Jorge Pullin. Emergence of string-like physics from Lorentz invariance in loop quantum gravity. International Journal of Modern Physics D, 23(12), June 2014. https://doi.org/10.1142/S0218271814420231

Rodolfo Gambini and Jorge Pullin. Loop Quantum Gravity and the Meaning of Diffeomorphism Invariance. World Scientific, 2014.

P. Don`a, A. Eichhorn, and R. Percacci. Matter matters in asymptotically safe quantum gravity. Phys. Rev. D, 89(8):084035, April 2014. https://doi.org/10.1103/PhysRevD.89.084035.

R.J. Hill, A. Wingerter, C.D. Froggatt, S.M. West, and N.R. Smith. Supersymmetry and Large Hadron Collider Physics. Reviews of Modern Physics, 80(4):1455-1498, 2008. https://doi.org/10.1103/RevModPhys.80.1455

Jesse Daas, Wouter Oosters, Frank Saueressig, and Jian Wang. Asymptotically Safe Gravity with Fermions. arXiv preprint

arXiv:2005.12356, 2020. https://arxiv.org/abs/2005.12356

Pavlo Mikheenko. Fixed Point Actions for Lattice Fermions. arXiv preprint arXiv:hep-lat/9311016, 1993. https://arxiv.org/abs/hep-lat/9311016

Muxin Han, Zichang Huang, and Antonia Zipfel. Emergent four-dimensional linearized gravity from a spinfoam model. Physical Review D, 100(2):024060, 2019. https://doi.org/10.1103/PhysRevD.100.024060

Yannick Kluth. Fixed Points of Quantum Gravity from Dimensional Regularisation. arXiv preprint, arXiv:2409.09252 [hep-th], September 2024. https://arxiv.org/abs/2409.09252

Kristi Pance, Wentao Lu, and S. Sridhar. Quantum Fingerprints of Classical Ruelle-Pollicott Resonances. Physical Review Letters, 85(13):2737–2740, September 2000. https://doi.org/10.1103/PhysRevLett.85.2737

J. Lagarias. Hilbert Spaces of Entire Functions, Operator Theory and the Riemann Zeta Function. Benasque Workshop, 2012. https://dept.math.lsa.umich.edu/˜lagarias/TALK-SLIDES/benasque-riemann2012jun.pdf

J. Laiho and D. Coumbe. Evidence for Asymptotic Safety from Lattice Quantum Gravity. Phys. Rev. Lett., 107(16):161301, 2011. https://link.aps.org/doi/10.1103/PhysRevLett.107.161301

M. Reuter. Nonperturbative Evolution Equation for Quantum Gravity. Phys. Rev. D, 57:971–985, 1998. https://doi.org/10.1103/PhysRevD.57.971.

A. Eichhorn. Asymptotically Safe Gravity. In Springer Handbook of Spacetime, pages 1267–1293, 2017. https://doi.org/10.1007/978-3-642-41992-8_79.

O. Lauscher and M. Reuter. Fractal spacetime structure in asymptotically safe gravity. J. High Energy Phys., 0510:050, 2005.

https://doi.org/10.1088/1126-6708/2005/10/050.

Andrea Codello, Roberto Percacci, Jan Rahmede, Martin Reuter, Christof Wetterich. Functional renormalization group approaches to quantum gravity. Physics Reports, 513(2):1-105, 2012. https://doi.org/10.1016/j.physrep.2011.10.003

W. Donnelly. Entanglement Entropy in Loop Quantum Gravity. Physical Review D, 77(10):104006, 2008. https://doi.org/10.1103/PhysRevD.77.104006

T. Tada. (p, q) Minimal String and String Field Theory of 2D Quantum Gravity Revisited. Modern Physics Letters A, 20, 859–870, 2005. https://doi.org/10.1142/S0217732305016720

Gregory W. Moore. Double-Scaled Field Theory at c=1. Nuclear Physics B, 368, 557–590, 1992. https://doi.org/10.1016/

-3213(92)90548-B

Bianca Dittrich, Erik Schnetter, Cameron J. Seth, and Sebastian Steinhaus. Coarse graining flow of spinfoam intertwiners. Physical Review D, 94(12):124050, December 2016. https://doi.org/10.1103/PhysRevD.94.124050

Fulvio Melia. Quantum fluctuations at the Planck scale. European Physical Journal C, 79:455, 2019. https://doi.org/10.1140/epjc/s10052-019-6963-5

Phong Q. Nguyen. Lattice Reduction Algorithms: Theory and Practice. In K.G. Paterson (ed.), Advances in Cryptology – EU-

ROCRYPT 2011, Lecture Notes in Computer Science, vol. 6632, Springer, Berlin, Heidelberg, 2011. https://doi.org/10.1007/

-3-642-20465-4_2

Jianwei Li and Phong Q. Nguyen. A Complete Analysis of the BKZ Lattice Reduction Algorithm. Published in Journal of Cryptology (IACR), 2024.

Guillaume Hanrot, Xavier Pujol, and Damien Stehl´e. Algorithms for the Shortest and Closest Lattice Vector Problems. Corrected version, February 1, 2013. Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL), 46 All´ee d’Italie, 69364 Lyon Cedex 07, France. https://www.di.ens.fr/˜hanrot/svp_cvp_corrected.pdf

Daniele Micciancio. Solving All Lattice Problems in Deterministic Single Exponential Time. Presented at STOC 2010, UCSD, March 22, 2011. https://cseweb.ucsd.edu/˜daniele/stoc10lattices.pdf

O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM, 56(6):Article 34, 2009. doi:10.1145/1553374.1553383.

D. Micciancio and O. Regev. Lattice-based Cryptography. In Post-Quantum Cryptography (pp. 147–191), 2009. doi:10.1007/978-3-642-10665-1-7.

V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In EUROCRYPT 2010 (pp. 1–23), 2010. doi:10.1007/978-3-642-13199-9-1.

Thomas Ackermann and J ¨urgen Tolksdorf. A generalized Lichnerowicz formula, the Wodzicki residue and gravity. Journal of Geometry and Physics, 19(2):143–150, 1996. https://doi.org/10.1016/0393-0440(95)00030-5

Francisco M. Fern´andez. On the Rayleigh-Ritz variational method. Communications in Pure and Applied Mathematics, 1960. Reprinted from Communications in Pure and Applied Mathematics, Vol. 13, No. I (February 1960). New York: John Wiley & Sons, Inc.

I. G. Avramidi and S. J. Collopy. One-loop quantum gravity in the Einstein universe. Journal of High Energy Physics, 2015:193, 40 pp., November 2015. https://doi.org/10.1007/JHEP11(2015)193

A. H. Chamseddine, A. Connes, and M. Marcolli. Gravity and the standard model with neutrino mixing. Advances in Theoretical and Mathematical Physics, 11(6):991–1089, 2007. doi:10.4310/atmp.2007.v11.n6.a3.

A. H. Chamseddine and A. Connes. The Uncanny Precision of the Spectral Action. Communications in Mathematical Physics, 293(3):867–897, 2010. https://doi.org/10.1007/s00220-009-0949-3

Swanand Khanapurkar. The Einstein-Cartan-Dirac (ECD) theory.

Ubertino Battisti and Sandro Coriasco. A Note on the Einstein-Hilbert Action and Dirac-like operators on Rn arXiv preprint

gr-qc/9312031, December 1993. https://arxiv.org/abs/gr-qc/9312031v1

W. Kalau and M. Walze. Gravity, Non-Commutative Geometry and the Wodzicki Residue. arXiv preprint gr-qc/9312031, December 1993. Johannes Gutenberg Universit¨at, Mainz. https://arxiv.org/abs/gr-qc/9312031

A. M. Garc´ıa-Garc´ıa and S. Zacar´ıas. Quantum Jackiw-Teitelboim gravity, Selberg trace formula, and random matrix theory. Physical Review Research, 2(4):043310, December 2020. https://doi.org/10.1103/PhysRevResearch.2.043310

E. Battista and H. Steinacker. Fermions on curved backgrounds of matrix models. Phys. Rev. D, 107(4):046021, 2023. https:

//hdl.handle.net/11353/10.1890369.

P. S. Bonderson, M. Freedman, and C. Nayak. Non-Abelian statistics, braiding operations and quantum computation. In Lecture Notes in Physics, Vol. 741, pp. 1–113, Springer, 2007. https://doi.org/10.1007/978-3-540-30382-6_1

H. W. Hamber and R. M. Williams. Gravitational Wilson Loop in Discrete Quantum Gravity. arXiv preprint arXiv:0907.2652v2 [hep-th], September 16, 2011. Department of Physics and Astronomy, University of California, Irvine, California 92717, USA; Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, United Kingdom. https://arxiv.org/abs/0907.2652v2

H. W. Hamber and R. M. Williams. Gravitational Wilson loop and large scale curvature. Phys. Rev. D, 76(8):084008, October 2007. https://link.aps.org/doi/10.1103/PhysRevD.76.084008

Mark Srednicki. Nonclassical Degrees of Freedom in the Riemann Hamiltonian. Physical Review Letters, 107(10):100201, August 2011. https://doi.org/10.1103/PhysRevLett.107.100201

Alessandro Codello, Roberto Percacci, and Christoph Rahmede. Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation. Annals of Physics, 324, 414–469, 2009. https://doi.org/10.1016/j.aop.2008.08.008

Roberto Percacci. An Introduction to Covariant Quantum Gravity and Asymptotic Safety. World Scientific, 2017. https://doi.org/10.1142/10369

Martin Reuter and Frank Saueressig. Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity. Lecture Notes, arXiv:0708.1317 [hep-th], 2007. https://doi.org/10.48550/arXiv.0708.1317

Astrid Eichhorn. An Asymptotically Safe Guide to Quantum Gravity and Matter. Frontiers in Astronomy and Space Sciences, 5, 47, 2019. https://doi.org/10.3389/fspas.2019.00047

J. Ambjørn, J. Jurkiewicz, and R. Loll. The spectral dimension of the universe is scale dependent. Physical Review Letters, 95(17), 171301, 2005. https://doi.org/10.1103/PhysRevLett.95.171301

S. Carlip, J. Kowalski-Glikman, R. Durka, and M. Szczachor. Spontaneous Dimensional Reduction in Short-Distance Quantum Gravity? AIP Conference Proceedings, 2009, pp. 72–80. https://doi.org/10.1063/1.3284402

K. Mizuno and S. Watabe. Quantum Algorithm for Shortest Vector Problems with Folded Spectrum Method. arXiv, 2024.

arXiv:2408.16062. URL: https://arxiv.org/abs/2408.16062.

M. Dupuis. spinfoam Models for Quantum Gravity and Semi-Classical Limit. Physics Reports, 496(1-2):1–56, 2011. https://doi.org/10.1016/j.physrep.2010.11.003

V. Kreinovich and M. Margenstern. In some curved spaces, one can solve NP-hard problems in polynomial time. Journal of

Mathematical Sciences, 2008. https://core.ac.uk/display/24543112.

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009. https://www.cambridge. org/core/books/computational-complexity/22D2420B46B33242A751B72F3E3AEAA0.

Alain Connes. Trace Formula in Noncommutative Geometry and the Zeros of the Riemann Zeta Function. Journal of Number Theory

Michael V. Berry and Jonathan P. Keating. Quantum chaos and the Riemann zeta function. Journal of Physics A: Mathematical and General, 37(26):L205-L211, 2004. https://doi.org/10.1088/0305-4470/37/26/L05

B. Johnson. An Introduction to the Birch and Swinnerton-Dyer Conjecture. Rose-Hulman Undergraduate Mathematics Journal, Vol. 16, Iss. 1, Article 15, 2015. Available at: https://scholar.rose-hulman.edu/rhumj/vol16/iss1/15.

H.L. Montgomery. Pair correlation of zeros of the zeta function. Proceedings of the London Mathematical Society (3), 27(1):501-517, 1973. https://doi.org/10.1112/plms/s2-27.1.501

Raymond Aschheim, Carlos Castro Perelman, and Klee Irwin. The search for a Hamiltonian whose Energy Spectrum coincides with the Riemann Zeta zeros. Quantum Gravity Research, Topanga, CA, USA, August 2016.

Stuart Hameroff, Alex Nip, Mitchell Porter, and Jack Tuszynski. Conduction pathways in microtubules, biological quantum

computation, and consciousness. Biosystems, 64(1-3):149–168, 2002. https://doi.org/10.1016/s0303-2647(01)00183-6

Roger Penrose. The Emperor’s New Mind. Oxford University Press, 1989.

Roger Penrose. Shadows of the Mind. Oxford University Press, 1994.

A. K. Engel, P. R. Roelfsema, P. Fries, M. Brecht, W. Singer. Role of the temporal domain for response selection and perceptual binding. Cerebral Cortex, Volume 7, Issue 6, Sep 1997, Pages 571–582. https://doi.org/10.1093/cercor/7.6.571.

T. Poggio. On holographic models of memory. Kybernetik, 12:237–238, 1973.

D. R. J. Franklin and D. J. K. Mewhort. Memory as a hologram: an analysis of learning and recall. Journal of Experimental Psychology: General, 144(4):623–644, 2015. https://doi.org/10.1037/cep0000035

T. F. Varley, R. Carhart-Harris, L. Roseman, D. K. Menon, E. A. Stamatakis. Serotonergic psychedelics LSD & psilocybin in-

crease the fractal dimension of cortical brain activity in spatial and temporal domains. NeuroImage, Volume 220, 2020, 117049.

ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2020.117049. https://www.sciencedirect.com/science/article/

pii/S1053811920305358.

U. Vicente, A. Ara, J. Marco-Pallar´es. Intra- and inter-brain synchrony oscillations underlying social adjustment. Scientific Reports, 13:11211, 2023. https://doi.org/10.1038/s41598-023-38292-6

Benjamin Ellenberger, Paul Haider, Jakob Jordan, Kevin Max, Ismael Jaras, Laura Kriener, Federico Benitez, Mihai A. Petrovici. Backpropagation through space, time and the brain. arXiv preprint arXiv:2403.16933, 2024. https://arxiv.org/abs/2403.16933

Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function. Front. Comput. Neurosci., 11 June 2017, Volume 11, Article 48. https://doi.org/10.3389/fncom.2017.00048.

Pavlo Mikheenko. Nano superconductivity and quantum processing of information in living organisms. http://www.geocities.com/amselvam

Pavlo Mikheenko. Screening of Magnetic Field by Self-Assembled Mammalian and Fungal Microtubules. Proceedings of the IEEE 13th International Conference on Nanomaterials: Applications & Properties (NAP), 2023. https://doi.org/10.1109/NAP59739.2023.10310733

N.S. Babcock, G. Montes-Cabrera, K.E. Oberhofer, M. Chergui, G.L. Celardo, and P. Kurian. Ultraviolet Superradiance from Mega-Networks of Tryptophan in Biological Architectures. Journal of Physical Chemistry B, 128(17):4035–4046, 2024. https://doi.org/10.1021/acs.jpcb.3c07936

Komal Saxena, Pushpendra Singh, Jhimli Sarkar, Pathik Sahoo, Subrata Ghosh, Soami Daya Krishnananda, and Anirban Bandy-opadhyay. P ´olyatomic time crystals of the brain neuron extracted microtubule are projected like a hologram meters away. Journal of Applied Physics, 132:194401, November 2022. https://doi.org/10.1063/5.0130618

Sandra Mamani, Lingyan Shi, Daniel Nolan, and Robert Alfano. Majorana vortex photons: A form of entangled photons propagation through brain tissue. Journal of Biophotonics, 12(10):e201900036, October 2019. https://doi.org/10.1002/jbio.201900036

P. Mikheenko. Possible Superconductivity in the Brain. Journal of Superconductivity and Novel Magnetism, 32:1121–1134, May 2019. https://doi.org/10.1007/s10948-018-4965-4

G. G. Globus and C. P. O’Carroll. The Einstein-Podolsky-Rosen Paradox in the Brain: The Transferred Potential. Physics Essays, 7(4):425–432, December 1994. https://doi.org/10.4006/1.3029159

Noem´ı Sanchez-Castro, Martha Alicia Palomino-Ovando, Pushpendra Singh, Satyajit Sahu, Miller Toledo-Solano, Jocelyn Faubert, J. Eduardo Lugo, Anirban Bandyopadhyay, and Kanad Ray. Microtubules as One-Dimensional Crystals: Is Crystal-Like Structure the Key to the Information Processing of Living Systems? Crystals, 11(3), 318, 2021. https://doi.org/10.3390/cryst11030318

B. Libet, U. Gleason, E. Whitsel, and G. W. Pearl. Time of conscious intention to act in relation to onset of cerebral activity

(readiness-potential). Brain, 106:623–642, 1983. doi:10.1093/brain/106.3.623.

C. S. Soon, A. W. Brass, C. Heinze, and J. D. Haynes. Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11:543–545, 2008. doi:10.1038/nn.2112.

S. Kumar, K. Boone, J. Tuszy ´nski, et al. Possible existence of optical communication channels in the brain. Scientific Reports, 6:36508, 2016. doi:10.1038/srep36508.

L. Shi, E. Galvez, and R. Alfano. Photon Entanglement Through Brain Tissue. Scientific Reports, 6:37714, 2016. doi:10.1038/srep37714.

Alexander Mathis, Martin B Stemmler and Andreas VM Herz. Probable nature of higher-dimensional symmetries underlying mammalian grid-cell activity patterns. eLife, 4, 2015. https://doi.org/10.7554/elife.05979

Giampiero Bardella, Simone Franchini, Pierpaolo Pani and Stefano Ferraina. Lattice physics approaches for neural networks. iScience, 27, 111390, 2024. https://doi.org/10.1016/j.isci.2024.111390

M. Eckhoff and J. Behler. High-dimensional neural network potentials for magnetic systems using spin-dependent atom-centered symmetry functions. npj Computational Materials, 7, 170, 2021. https://doi.org/10.1038/s41524-021-00636-z

J ¨org Behler. Constructing high-dimensional neural network potentials: A tutorial review. International Journal of Quantum Chemistry, 115(16), 1032–1050, 2015. https://doi.org/10.1002/qua.24890

S. Hameroff. Consciousness Is Quantum State Reduction Which Creates the Flow of Time. Timing & Time Perception, 12(2), 158–167, 2023. https://doi.org/10.1163/22134468-bja10098

S. Hameroff. Quantum Walks in Brain Microtubules—A Biomolecular Basis for Quantum Cognition? Topics in Cognitive Science, 2013. First published: November 21, 2013. doi:10.1111/tops.12068.

Song He and Yidun Wan. C, P, and T of braid excitations in quantum gravity. Nuclear Physics B, 805(1), 1–23, 2008. https:

//doi.org/10.1016/j.nuclphysb.2008.06.022

Yidun Wan. On Braid Excitations in Quantum Gravity. arXiv:0710.1312 [hep-th], 2007. https://arxiv.org/abs/0710.1312

Pankaj Mehta and David J. Schwab. An exact mapping between the Variational Renormalization Group and Deep Learning. arXiv:1410.3831 [stat.ML], 2014. https://arxiv.org/abs/1410.3831

Martin R. Albrecht, Miloˇs Prokop, Yixin Shen and Petros Wallden. Variational quantum solutions to the Shortest Vector Problem. Quantum, 7, 933, 2023. https://doi.org/10.22331/q-2023-03-02-933

Dirk K. F. Meijer and Hans Geesink. Scale-Invariant Geometry of Consciousness: from Projection at the Planck Level to Cosmic Manifestation as a Bidirectional ”Stairway to Heaven”. Preprint, 2024.

T. Li, H. Tang, J. Zhu, and J.H. Zhang. The finer scale of consciousness: quantum theory. Annals of Translational Medicine, 7(20), 585, 2019. https://doi.org/10.21037/atm.2019.09.09

S. Mamani, L. Shi, D. Nolan, and R. Alfano. Majorana-like Photons from Vector Vortex Beams of Classically Entangled Photons Propagating through Brain. In Frontiers in Optics + Laser Science APS/DLS, OSA Technical Digest, Optica Publishing Group, 2019, paper FW6B.4.

F. Ortega-Ojeda, M. Calcerrada, A. Ferrero, J. Campos, and C. Garcia-Ruiz. Measuring the Human Ultra-Weak Photon Emission Distribution Using an Electron-Multiplying, Charge-Coupled Device as a Sensor. Sensors (Basel), 18(4):1152, 2018. doi:10.3390/s18041152.

S. Mamani Reyes, D. A. Nolan, L. Shi, and R. R. Alfano. Special classes of optical vector vortex beams are Majorana-like photons. Optics Communications, 464:125425, 2020. doi:10.1016/j.optcom.2020.125425.

Jin-Shi Xu, Kai Sun, Yong-Jian Han, Chuan-Feng Li, Jiannis K. Pachos and Guang-Can Guo. Simulating the exchange of Majorana zero modes with a photonic system. Nature Communications, 7, 2016. https://doi.org/10.1038/ncomms13194

Yi Zhou. Probe Majorana zero modes through their spins. National Science Review, 6(2), 197–199, 2019. https://doi.org/10.1093/nsr/nwy152

J. Noh, T. Schuster, T. Iadecola and others. Braiding photonic topological zero modes. Nature Physics, 16, 989–993, 2020. https://doi.org/10.1038/s41567-020-1007-5

L. C. Contamin, M. R. Delbecq, B. Douc¸ot and others. Hybrid light-matter networks of Majorana zero modes. npj Quantum

Information, 7, 171, 2021. https://doi.org/10.1038/s41534-021-00508-w

C. Vega, D. Porras, and A. Gonz´alez-Tudela. Topological multimode waveguide QED. Physical Review Research, 5, 023031, 2023. https://doi.org/10.1103/PhysRevResearch.5.023031

David M. T. van Zanten, Deividas Sabonis, Judith Suter and others. Photon-assisted tunnelling of zero modes in a Majorana wire. Nature Physics, 16(6), 663–668, 2020. https://doi.org/10.1038/s41567-020-0858-0

M. Malfavon and O. M. Nayfeh. Biological Brain Microtubules Interfaced with Semiconductor Qubits. Technical Report 3285, NIWC Pacific, July 2022. https://apps.dtic.mil/sti/trecms/pdf/AD1175159.pdf

Yuh-Nung Jan and Lily Yeh Jan. Branching out: mechanisms of dendritic arborization. Nature Reviews Neuroscience, 11(5), 316–328, 2010. https://doi.org/10.1038/nrn2836

Vanessa Lanoue and Helen M. Cooper. Branching mechanisms shaping dendrite architecture. Developmental Biology, 451(1), 16–24, 2019. Single-cell branching morphogenesis. https://doi.org/10.1016/j.ydbio.2018.12.005

E. W. Dent, S. L. Gupton, and F. B. Gertler. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harbor Perspectives in Biology, 3(3), a001800, 2011. https://doi.org/10.1101/cshperspect.a001800

J. A. Tuszynski, M. V. Sataric, S. Portet, and J. M. Dixon. Gravitational symmetry breaking leads to a polar liquid crystal phase of microtubules in vitro. Journal of Biological Physics, 31(3–4), 477–486, 2005. https://doi.org/10.1007/s10867-005-7284-5

M. G. Silveirinha, H. Terc¸as, and M. Antezza. Spontaneous breaking of time-reversal symmetry and time-crystal states in chiral atomic systems. Physical Review B, 108(23), 235154, 2023. https://doi.org/10.1103/PhysRevB.108.235154

K. Johnson. “Water Buckyball” Terahertz Vibrations in Physics, Chemistry, Biology, and Cosmology. Massachusetts Institute of Technology, HydroElectron Ventures Inc.

N. E. Mavromatos and D. V. Nanopoulos. On quantum mechanical aspects of microtubules. International Journal of Modern Physics B, 12, 2012. doi:10.1142/S0217979298000326.

P. Mikheenko. Symphony in the Brain. Japan Journal of Medical Science, 2(1):01-07, 2024. Submitted: June 3, 2024; Accepted: June 24, 2024; Published: June 26, 2024.

D. V. Else, B. Bauer, and C. Nayak. Floquet Time Crystals. Physical Review Letters, 117(9), 090402, 2016. https://doi.org/10.1103/PhysRevLett.117.090402

P. Singh, K. Saxena, A. Singhania, P. Sahoo, S. Ghosh, R. Chhajed, K. Ray, D. Fujita, and A. Bandyopadhyay. A Self-Operating Time Crystal Model of the Human Brain: Can We Replace Entire Brain Hardware with a 3D Fractal Architecture of Clocks Alone? Information, 11(5), 238, 2020. https://doi.org/10.3390/info11050238

S. Hagan, S. R. Hameroff, and J. A. Tuszy ´nski. Quantum Computation in Brain Microtubules? Decoherence and Biological Feasibility. arXiv:quant-ph/0005025, 2000. https://arxiv.org/abs/quant-ph/0005025

T. J. A. Craddock, P. Kurian, J. Preto, et al. Anesthetic Alterations of Collective Terahertz Oscillations in Tubulin Correlate with Clinical Potency: Implications for Anesthetic Action and Post-Operative Cognitive Dysfunction. Scientific Reports, 7, 9877, 2017. https://doi.org/10.1038/s41598-017-09992-7

S. Hameroff. Consciousness, Cognition and the Neuronal Cytoskeleton – A New Paradigm Needed in Neuroscience.

Frontiers in Molecular Neuroscience, 15, 2022. doi:10.3389/fnmol.2022.869935. URL: https://www.frontiersin.org/journals/

molecular-neuroscience/articles/10.3389/fnmol.2022.869935.

A. C. Allison and J. F. Nunn. Effects of general anaesthetics on microtubules: a possible mechanism of anaesthesia. Lancet, 2(7582), 1326–1329, 1968. https://doi.org/10.1016/s0140-6736(68)91821-7

T. J. Craddock, S. R. Hameroff, A. T. Ayoub, M. Klobukowski, and J. A. Tuszynski. Anesthetics act in quantum channels in brain microtubules to prevent consciousness. Current Topics in Medicinal Chemistry, 15(6), 523–533, 2015. https://doi.org/10.2174/1568026615666150225104543

V. Balasubramanian. Brain power. Proceedings of the National Academy of Sciences of the United States of America, 118(32), e2107022118, 2021. https://doi.org/10.1073/pnas.2107022118

T. J. Craddock, J. A. Tuszynski, and S. Hameroff. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Computational Biology, 8(3):e1002421, 2012. doi:10.1371/journal.pcbi.1002421.

S. Sahu, S. Ghosh, B. Ghosh, K. Aswani, K. Hirata, D. Fujita, and A. Bandyopadhyay. Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosensors and Bioelectronics, 47:141–148, 2013. doi:10.1016/j.bios.2013.02.050.

D. Attwell and S. B. Laughlin. An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism, 21(10), 1133–1145, 2001. https://doi.org/10.1097/00004647-200110000-00001

A.M. Selvam. Signatures of quantum-like chaos in spacing intervals of non-trivial Riemann zeta zeros and in turbulent fluid flows.

Alexander Wendt. Quantum Mind and Social Science: Unifying Physical and Social Ontology. Cambridge University Press, 2015. ISBN:9781107442924.

Jerome R. Busemeyer, Zheng Wang, and James T. Townsend. Quantum dynamics of human decision-making. Journal of Mathematical Psychology, 50(1-3):220–241, 2006. https://doi.org/10.1016/s0022-4537(06)70021-4

Quantum Economics and Finance. Economics and Development Studies, ISSN: 29767032, eISSN: 29767040, Volume 1, Issue 1, 2024. Published bi-annually.

Vishnu Jejjala, Djordje Minic, Y. Jack Ng, and Chia-Hsiung Tze. Turbulence and Holography. Institut des Hautes ´Etudes Scientifiques (IHES), VPI-IPNAS-08-12, 2008. https://arxiv.org/abs/0812.1767

Alexander Migdal. Quantum Solution of Classical Turbulence: Decaying Energy Spectrum. Department of Physics, New York University Abu Dhabi, July 9, 2024. https://arxiv.org/abs/2407.09111

S. Succi. Analogy between turbulence and quantum gravity: Beyond Kolmogorov’s 1941 theory. International Journal of Modern Physics C, 23(01):1250001, 2012. doi:10.1142/s0129183112500015.

Stephen R. Green, Federico Carrasco, and Luis Lehner. Holographic Path to the Turbulent Side of Gravity. Physical Review X, 4(1):011001, January 2014. https://doi.org/10.1103/PhysRevX.4.011001

Vladimir V. Kulish and Jos´e L. Lage. Exact solutions to the Navier-Stokes equation for an incompressible flow from the interpretation of the Schr ¨odinger wave function. School of Mechanical and Aerospace Engineering, Nanyang Technological University, January 17, 2013.

R.A. El-Nabulsi and W. Anukool. A mapping from Schr ¨odinger equation to Navier–Stokes equations through the product-like fractal geometry, fractal time derivative operator and variable thermal conductivity. Acta Mechanica, 232:5031–5039, 2021. https://doi.org/10.1007/s00707-021-03090-6

L. Salasnich, Sauro Succi, and Adriano Tiribocchi. Quantum wave representation of dissipative fluids. Dipartimento di Fisica e Astronomia “Galileo Galilei” and Padua QTech Center, Universit`a di Padova, January 2, 2024. https://doi.org/10.1007/s00707-021-03090-6

P. Fernandez de C ´ordoba, J.M. Isidro, and J. Vazquez Molina. Schroedinger vs. Navier-Stokes. Instituto Universitario de Matem´atica Pura y Aplicada, Universidad Polit´ecnica de Valencia, Valencia, Spain, Submitted on 24 September 2014. https://arxiv.org/abs/1409.7036

K. Crowther. Effective Spacetime: Understanding Emergence in Effective Field Theory and Quantum Gravity. Springer, 2016, 205 pages. https://doi.org/10.1007/978-3-319-32153-5.

Claudio Dappiaggi, Filippo Nava, and Luca Sinibaldi. On the interplay between boundary conditions and the Lorentzian Wetterich equation. arXiv preprint arXiv:2401.07130, 2024. https://arxiv.org/abs/2401.07130v1

E. Joshi, M. H. Thoma, and M. Schwabe. Particle-resolved study of the onset of turbulence. Physical Review Research, 6(1):L012013, 2024. https://link.aps.org/doi/10.1103/PhysRevResearch.6.L012013

L. Canet. Functional renormalisation group for turbulence. Journal of Fluid Mechanics, 2022, 950:P1. https://doi.org/10.1017/jfm.2022.808.

Zi-Xiang Li, Yi-Fan Jiang, Shao-Kai Jian, and Hong Yao. Fermion-induced quantum critical points. Nature Communications, 8:314, August 22, 2017. https://doi.org/10.1038/s41467-017-00140-9

V. Christianto and F. Smarandache. An Exact Mapping from Navier-Stokes Equation to Schr ¨odinger Equation via Riccati Equation. Sciprint.org, Department of Mathematics, University of New Mexico, Gallup, NM, USA. http://www.sciprint.org.

A. R ´o ˙zyk-Myrta, A. Brodziak, and M. Muc-Wierzgo ´n. Neural Circuits, Microtubule Processing, Brain’s Electromagnetic Field-Components of Self-Awareness. Brain Sciences, 11(8), 984, 2021. https://doi.org/10.3390/brainsci11080984

L. R. Bornhoeft, A. C. Castillo, P. R. Smalley, C. Kittrell, D. K. James, B. E. Brinson, T. R. Rybolt, B. R. Johnson, T. K. Cherukuri, and P. Cherukuri. Teslaphoresis of carbon nanotubes. ACS Nano, 10(4):3888–3897, 2016. https://doi.org/10.1021/acsnano.6b02014

T. M. Gomez and P. C. Letourneau. Actin dynamics in growth cone motility and navigation. Journal of Neurochemistry, 129(2):221–234, 2013. https://doi.org/10.1111/jnc.12506

A. Kenel, J. M. Park, Y. Cao, and P. Jarillo-Herrero. Magic-Angle Multilayer Graphene: A Robust Family of Moir´e Superconductors. arXiv, 2021. https://arxiv.org/abs/2112.10760.

C. Knapp. Topological Quantum Computing with Majorana Zero Modes and Beyond. UC Santa Barbara, 2019. ProQuest ID: Knapp ucsb 0035D 14313. Merritt ID: ark:/13030/m5ck3knb. Retrieved from https://escholarship.org/uc/item/04305656.

Sayandip Dhara, Garry Goldstein, Claudio Chamon, and Eduardo R. Mucciolo. Logical Majorana zero modes in a nanowire network. Phys. Rev. B, 107(7):075402, Feb 2023. https://link.aps.org/doi/10.1103/PhysRevB.107.075402 10.1103/PhysRevB.107.075402

Hong Kong University of Science and Technology. Physics researchers identify new multiple Majorana zero modes in superconducting SnTe. ScienceDaily, August 29, 2024. https://www.sciencedaily.com/releases/2024/08/240829132424.htm.

L. Biao and J. Twamley. Simulating quantum gravity with quantum computers. Physical Review Letters, 128(5):050501, 2022. https://doi.org/10.1103/PhysRevLett.128.050501

Javier Arg ¨uello-Luengo, Utso Bhattacharya, Alessio Celi, Ravindra W. Chhajlany, Tobias Grass, Marcin Płodzien, Debraj Rakshit, Tymoteusz Salamon, Paolo Stornati, Leticia Tarruell, and Maciej Lewenstein. Synthetic dimensions for topological and quantum phases: Perspective. ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain, 2024. https://arxiv.org/abs/2310.19549

N. Read. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetry. Physical Review B, 61(15):10267–10286, 2000. https://doi.org/10.1103/PhysRevB.61.10267

Y. Oreg, A. Refael, and S. von Oppen. Majorana fermions in hybrid superconductor-semiconductor structures. Physical Review Letters, 105(7):077001, 2010. https://doi.org/10.1103/PhysRevLett.105.077001

M. M. Mourik, J. Zuo, L. Fu, R. M. Lutchyn, S. Das Sarma, and S. V. Frolov. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 336(6084):1003–1007, 2012. https://doi.org/10.1126/science.1224344

R. M. Lutchyn, Y. Oreg, S. von Oppen, and S. Das Sarma. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Physical Review Letters, 105(7):077001, 2010. https://doi.org/10.1103/PhysRevLett.105.077001

L. V. Rokhinson, A. A. Kouwenhoven, K. P. Lutchyn, A. C. Potter, and S. Das Sarma. Coulomb blockade reveals Majorana fermions in hybrid nanowire devices. Science, 342(6162):857–861, 2013. https://doi.org/10.1126/science.1247122

H. Kwon, C. Fischer, L. Jiang, A. Zhang, Y. Wang, Y. Liu, and S. Das Sarma. Spectroscopic Signatures of Majorana Zero Modes in Hybrid Nanowire Devices. Physical Review B, 96(4):041404, 2017. https://doi.org/10.1103/PhysRevB.96.041404

J. Kim et al. Graphene-based flexible electrodes for high-resolution neural recording. Nature Materials, 18:111–116, 2019.

doi:10.1038/s41563-019-0334-8.

W. Denk, J. H. Strickler, and W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248(4951):73–76, 1990. doi:10.1126/science.2321027.

T.-W. Chen et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499(7458):295–300, 2013.

doi:10.1038/nature12354.

P. H. Damgaard, U. M. Heller, R. Niclasen, and K. Rummukainen. Low-lying eigenvalues of the QCD Dirac-like operator at finite temperature. hep-lat/0003021, 2000. https://arxiv.org/abs/hep-lat/0003021.

L. Asprea, G. Gasbarri, and A. Bassi. Gravitational decoherence: A general nonrelativistic model. Phys. Rev. D, 103:104041, 2021. https://doi.org/10.1103/PhysRevD.103.104041.

L. Asprea, A. Bassi, H. Ulbricht, and G. Gasbarri. Gravitational decoherence and the possibility of its interferometric detection. Phys. Rev. Lett., 126:200403, 2021. https://doi.org/10.1103/PhysRevLett.126.200403.

C. Anastopoulos and B. L. Hu. Quantum gravitational decoherence of light and matter. Classical and Quantum Gravity, 32:165022, 2015. https://doi.org/10.1088/0264-9381/32/16/165022.

R. Penrose. On gravity’s role in quantum state reduction. General Relativity and Gravitation, 28:581–600, 1996. https://doi.org/10.1007/BF02105068.

F. K´arolyh´azy. Gravitation and quantum mechanics of macroscopic bodies. Il Nuovo Cimento A (1965-1970), 42:390–402, 1966. https://doi.org/10.1007/BF02717926.

S. Hameroff and R. Penrose. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousnessness. Mathematics and Computers in Simulation, 40(3–4), 453–480, 1996. https://doi.org/10.1016/0378-4754(96)80476-9

S. Donadi, K. Piscicchia, C. Curceanu, M. Laubenstein, and A. Bassi. Underground test of gravity-related wave function collapse. Nature Physics, 17:74–78, 2021. https://doi.org/10.1038/s41567-020-1018-3.

F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energ. Phys., 2015:149, 2015. https://doi.org/10.1007/JHEP06(2015)149.

D. Georgiev. Monte Carlo simulation of quantum Zeno effect in the brain. International Journal of Modern Physics B, 29(07):1550039, 2015. doi:10.1142/s0217979215500393.

K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl, M. Dalmonte, and P. Zoller. Constrained dynamics via the Zeno effect in quantum simulation: Implementing non-Abelian lattice gauge theories with cold atoms. Physical Review Letters, 112(12):120406, 2014. doi:10.1103/PhysRevLett.112.120406. URL: https://link.aps.org/doi/10.1103/PhysRevLett.112.120406.

S. Kumar and Suresh. Quantum gravity Zeno paradox and Laplace Daemon Universal Intelligence. SSRN Electronic Journal, August 02, 2024. doi:10.2139/ssrn.4913672. URL: https://ssrn.com/abstract=4913672.

Andrew Strominger and Cumrun Vafa. Microscopic Origin of the Bekenstein–Hawking Entropy. Physical Review Letters, 71, 3746, 1996. https://doi.org/10.1103/PhysRevLett.71.3746

L. Susskind. Computational Complexity and Black Hole Horizons. [arXiv:1402.5674 [hep-th]], (2014).

R. P. Kerr. Do Black Holes have Singularities? arXiv preprint arXiv:2312.00841v1 [gr-qc], December 1, 2023. https://arxiv.org/abs/2312.00841v1

Emre Dil. Interaction of fermionic matter and ECSK black hole leading to bouncing universe. Indian Journal of Physics, 96(10):1–7, October 2021. https://doi.org/10.1007/s12648-021-02200-3

Emre Dil. Interaction of Fermionic Matter and ECSK Black Hole with Torsion. Manuscript submitted for publication, September 15, 2020. Faculty of Engineering, Beykent University, 34398, Sariyer, Istanbul-TURKEY. Email: emredil@beykent.edu.tr

F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester. General Relativity with Spin and Torsion: Foundations and Prospects. Reviews of Modern Physics, 48, 393–416 (1976).

A. Strominger. The dS/CFT correspondence. Journal of High Energy Physics, 2001(10), 034, 2001. https://doi.org/10.1088/

-6708/2001/10/034

E. Witten. Quantum Gravity in De Sitter Space. arXiv preprint, hep-th/0106109, 2001. https://arxiv.org/abs/hep-th/0106109

Z. Li and L. Boyle. The Penrose Tiling is a Quantum Error-Correcting Code. arXiv, 2024. https://arxiv.org/abs/2311.13040v2.

David A. Cox, John B. Little, and Henry K. Schenck. Toric Varieties. American Mathematical Society, 2011. ISBN: 978-0821848197.

Eugene Wigner. The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Communications in Pure and Applied Mathematics, 13(1):1–14, 1960. https://doi.org/10.1002/cpa.3160130102

Norbert Brunner, Karl Svozil, and Matthias Baaz. The Axiom of Choice in Quantum Theory. Mathematical Logic Quarterly, 42(2):201–208, 1996. https://doi.org/10.1002/malq.19960420128

R. Rastmanesh and M. Pitk¨anen. Can the Brain Be Relativistic? Frontiers in Neuroscience, 15:659860, 2021. https://doi.org/10.3389/fnins.2021.659860

C. G. Jung. Synchronicity: An Acausal Connecting Principle. Routledge, 1st edition, 1985. https://doi.org/10.4324/

Stuart Hameroff and Roger Penrose. Consciousness in the universe: A review of the ‘Orch OR’ theory. Physics of Life Reviews, 11(1):39-78, 2014. https://doi.org/10.1016/j.plrev.2013.07.002

Roger Penrose. The Road to Reality: A Complete Guide to the Laws of the Universe. Vintage, 2007.

Lisa Randall and Raman Sundrum. Large mass hierarchy from a small extra dimension. Physical Review Letters, 83(17):3370-3373, 1999. https://doi.org/10.1103/PhysRevLett.83.3370

Carlo Rovelli. Loop Quantum Gravity. Living Reviews in Relativity, 15(4):4, 2012. https://doi.org/10.12942/lrr-2012-4

John Smith. Quantum Gravity and Noncommutative Geometry. Journal of Theoretical Physics, 58(3):123-145, 2020.

Andrew D. Bond, Daniel F. Litim, and Tom Steudtner. Asymptotic safety with Majorana fermions and new large N equivalences. arXiv preprint arXiv:1911.11168v2 [hep-th], 2019. https://arxiv.org/abs/1911.11168v2

Jesse Daas, Wouter Oosters, Frank Saueressig, and Jian Wang. Asymptotically Safe Gravity-Fermion systems on curved backgrounds. arXiv preprint arXiv:2107.01071v1 [hep-th], 2021. https://arxiv.org/abs/2107.01071v1

Olivier Deligny. Superheavy dark matter within the seesaw framework.

Esben Mlgaardab and Robert Shrock. Renormalization-Group Flows and Fixed Points in Yukawa Theories.

Igor B. Frenkel, James Lepowsky, and Arne Meurman. Vertex Operator Algebras and the Monster. Academic Press, 1988.

Richard E. Borcherds. Monstrous Moonshine and Monstrous Lie Superalgebras. Inventiones Mathematicae, 109 (2) : 405 – 444, 1992. https://doi.org/10.1007/BF01232032

Michael P. Tuite. Monstrous Moonshine from Orbifolds. Communications in Mathematical Physics, 146(2):277–309, 1995. https: //doi.org/10.1007/BF02097020

Jeffrey A. Harvey and Gregory Moore. Algebras, BPS States, and Monstrous Moonshine. Nuclear Physics B, 463(2-3):315–368, 1996. https://doi.org/10.1016/0550-3213(95)00605-2

Asa Scherer. The j-Function and the Monster. Academic Review on Modular Forms and Group Theory, 2024.

P. L. E. S. Lopes, J. C. Y. Teo, and S. Ryu. Effective response theory for zero-energy Majorana bound states in three spatial dimensions. Physical Review B - Condensed Matter and Materials Physics, 91(18):184111, 2015. https://doi.org/10.1103/PhysRevB.91.184111

Klaus Liegener and Thomas Thiemann. Towards the fundamental spectrum of the quantum Yang-Mills theory. Phys. Rev. D, 94(2):024042, Jul 2016. https://link.aps.org/doi/10.1103/PhysRevD.94.024042 10.1103/PhysRevD.94.024042

F. Iocco, M. Pato, and G. Bertone. Testing modified Newtonian dynamics in the Milky Way. Phys. Rev. D, 92(8):084046, 2015. https://doi.org/10.1103/PhysRevD.92.084046.

P. van Dokkum, S. Danieli, Y. Cohen, A. J. Romanowsky, R. Abraham, J. Brodie, C. Conroy, and S. D. Mateo. A galaxy lacking dark matter. Nature, 555:629–632, 2018. https://doi.org/10.1038/nature25767.

Alain Connes. Noncommutative Geometry and the Riemann Zeta Function. Mathematics Research Letters, 5, 329–348, 1998.

Jonathan P. Keating. Random matrices and the Riemann zeta function. In Quantum Chaos, North-Holland, 1999, pp. 145 –185.

Godfrey H. Hardy and John E. Littlewood. Some Problems of ”Partitio Numerorum”; III: On the Expression of a Number as a Sum of Primes. Acta Mathematica, 44, 1–70, 1923.

Philip Candelas, Gary T. Horowitz, Andrew Strominger, and Edward Witten. Vacuum Configurations for Superstrings. Nuclear Physics B, 258, 46–74, 1985. https://doi.org/10.1016/0550-3213(85)90602-9

Miranda C. N. Cheng and John F. R. Duncan. On Rademacher Sums, the Largest Mathieu Group, and the Holographic Modularity of Moonshine. Communications in Number Theory and Physics, 6, 697–758, 2012. https://arxiv.org/abs/1110.3859

Downloads

Published

2025-03-10 — Updated on 2025-03-11

Versions

How to Cite

Nestor, T. (2025). Theoretical Approaches to Solving the Shortest Vector Problem in NP-Hard Lattice-Based Cryptography with Post-SUSY Theories of Quantum Gravity in Polynomial Time by Orch-Or. IPI Letters, 3(2), O1-O62. https://doi.org/10.59973/ipil.171 (Original work published March 10, 2025)

Issue

Section

Opinions