Information and modular universal evolution
DOI:
https://doi.org/10.59973/ipil.262Keywords:
Information, Energy, Matter, Natural selection, Intelligent Agents, Universe, Modules, Unit of interaction, Self-organization, Intelligent agent, Autonomy, Universal modular evolutionAbstract
Matter, energy, and information are inseparable, as energy and information are intrinsic properties of matter. In this framework, energy activates matter, while in-formation enables its organization. Atoms and molecules, as units of interaction in the non-living world, and modules, as biological and socio-cultural units in the living world, are formed through the dyad of self-organization and selection in interaction with matter (M), energy (E), and information (I). Based on these interactions, and in relation to time, the Modular Evolution Model (MEM) has been developed, from which the following equations are derived: E = Mi, M = E/i and i = E/M. The values of i in these formulas, reflect the ratio of time and information before and after an
evolutionary event, such as the emergence of a taxon. The history of matter is understood as a process of its modularization and energization over time, during which the values of information (I), self-organization (so), and energy (E) increase, while those of natural selection (ns), matter (M), and mass (m) decrease. Through the interplay of interaction units and modules as intelligent agents, and through selection, stability or autonomy is achieved. In the first stage, selection acts on the structure of interaction units and modules formed through self-organization processes. In the second stage, selection applies to these units and modules as they interact with the environment and with other modules, giving rise to semantic in-formation. Finally, the advantage of Universal Modular Evolution (UME) over the Modern Synthesis (MS) and the Extended Evolutionary Synthesis
(EES) is highlighted.
References
Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 5, 183–191, doi:10.1147/rd.53.0183. DOI: https://doi.org/10.1147/rd.53.0183
Shannon, C. A Mathematical Theory of Communication. The Bell System of Technical Journal 1948, 27, 379–423.
Lehn, J.-M. Toward Complex Matter: Supramolecular Chemistry and Self-Organization. Proc. Natl. Acad. Sci. U. S. A. 2002, 99,
–4768, doi:10.1073/pnas.072065599. DOI: https://doi.org/10.1073/pnas.072065599
Gershenson, C.; Fern´andez, N. Complexity and Information: Measuring Emergence, Self-Organization, and Homeostasis at
Multiple Scales. Complexity 2012, 18, 29–44, doi:10.1002/cplx.21424. DOI: https://doi.org/10.1002/cplx.21424
Frank, S.A. Natural Selection. V. How to Read the Fundamental Equations of Evolutionary Change in Terms of Information Theory, J. Evol. Biol. 2012, 25, 2377–2396, doi:10.1111/jeb.12010. DOI: https://doi.org/10.1111/jeb.12010
Menant, C. Information and Meaning. Entropy 2003, 5, 193–204, doi:10.3390/e5020193. DOI: https://doi.org/10.3390/e5020193
Krzanowski, R. What Is Physical Information? Philosophies 2020, 5, 10, doi:10.3390/philosophies5020010. DOI: https://doi.org/10.3390/philosophies5020010
Haken, H.; Portugali, J. Information and Self-Organization. Entropy 2017, 19, 18, doi:10.3390/e19010018. DOI: https://doi.org/10.3390/e19010018
Spirkin, A.G. Dialectical Materialism; Progress Publishers: Moscow, 1983.
Bajrami, Z. Informacioni dhe evolucioni modular; Akademia e Shkencave te Shqiperise, 2024.
Bajrami, Z. Information and Modular Evolution 2024. DOI: https://doi.org/10.20944/preprints202406.1607.v1
Von Bertalanffy, L. General System Theory: Foundations, Development, Applications; New Paperback, 1969.
Stonier, T. Information and the Internal Structure of the Universe; Springer-Verlag, 1990. DOI: https://doi.org/10.1007/978-1-4471-3265-3
Stonier, T. Information as a Basic Property of the Universe. Biosystems 1996, 38, 135–140, doi:10.1016/0303-2647(96)88368-7. DOI: https://doi.org/10.1016/0303-2647(96)88368-7
Hartwell, L.H.; Hopfield, J.J.; Leibler, S.; Murray, A.W. From Molecular to Modular Cell Biology. Nature 1999, 402, C47-52,
doi:10.1038/35011540. DOI: https://doi.org/10.1038/35011540
Fodor, J. The Modularity of Mind: An Essay on Faculty Psychology; MIT Press: Cambridge, MA, 1983. DOI: https://doi.org/10.7551/mitpress/4737.001.0001
Barkow, J.; Cosmides, L.; Tooby, J. The Adapted Mind: Evolutionary Psychology and the Generation of Culture; Oxford University Press, 1992. DOI: https://doi.org/10.1093/oso/9780195060232.001.0001
Armstrong, D.F.; Wilcox, S.E. The Gestural Origin of Language; Oxford University Press, 2007. DOI: https://doi.org/10.1093/acprof:oso/9780195163483.001.0001
Newman, M.E.J. Modularity and Community Structure in Networks. Proc. Natl. Acad. Sci. 2006, 103, 8577–8582,
doi:10.1073/pnas.0601602103. DOI: https://doi.org/10.1073/pnas.0601602103
Kauffman, S.A. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: New York, 1993;
ISBN 978-0-19-507951-7.
Self-Organization in Biological Systems; Camazine, S., Ed.; Princeton Univ. Press: Princeton, NJ, 2003; ISBN 978-0-691-11624-2.
Sugita, M.; Onishi, I.; Irisa, M.; Yoshida, N.; Hirata, F. Molecular Recognition and Self-Organization in Life Phenomena Studied by a Statistical Mechanics of Molecular Liquids, the RISM/3D-RISM Theory. Molecules 2021, 26, 271, doi:10.3390/molecules26020271. DOI: https://doi.org/10.3390/molecules26020271
Vopson, M.M. The Mass-Energy-Information Equivalence Principle. AIP Adv. 2019, 9, 095206, doi:10.1063/1.5123794. DOI: https://doi.org/10.1063/1.5123794
Menin, B.M. Theoretical Limits of the Mass–Energy–Information Equivalence. Eur. J. Sci. Innov. Technol. 2025, 5, 223–236.
Ottinger, H. Philosophical Approach to Quantum Field Theory; Cambridge University Press, 2017. DOI: https://doi.org/10.1017/9781108227667
Deutsch, D.; Marletto, C. Constructor Theory of Information. Proc. R. Soc. A 2015, 471, 20140540, doi:10.1098/rspa.2014.0540. DOI: https://doi.org/10.1098/rspa.2014.0540
Dobzhansky, T. Nothing in Biology Makes Sense except in the Light of Evolution. American Biology Teacher 1973, 35, 125–129, doi:10.2307/4444260. DOI: https://doi.org/10.2307/4444260
Marshall, S.M.; et al. Identifying Molecules as Biosignatures with Assembly Theory and Mass Spectrometry. Nat. Commun. 2021, 12, 3033, doi:10.1038/s41467-021-23258-x. DOI: https://doi.org/10.1038/s41467-021-23258-x
Sharma, A.; et al. Assembly Theory Explains and Quantifies Selection and Evolution. Nature 2023, 622, 321–328, doi:10.1038/s41586-023-06600-9. DOI: https://doi.org/10.1038/s41586-023-06600-9
Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum Algorithms for Supervised and Unsupervised Machine Learning. arXiv:1307.0411, 2013.
Schr¨odinger, E. What Is Life? & Mind and Matter; Cambridge University Press, 1974.
Alemi, M. Life, Energy and Information. In The Amazing Journey of Reason; Springer, 2020; pp. 1–10. ISBN 978-3-030-25961-7. DOI: https://doi.org/10.1007/978-3-030-25962-4_1
Lherminier, P. La pr´edation informative: vers un nouveau concept d’esp`ece. C. R. Biol. 2018, 341, 209–218.
Bateson, G. Steps to an Ecology of Mind; University of Chicago Press, 2000; ISBN 978-0-226-03906-0.
Shannon, C. A Mathematical Theory of Communication. 27, 379–423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Tomasello, M.; et al. Understanding and Sharing Intentions: The Origins of Cultural Cognition. Behav. Brain Sci. 2005, 28(5), DOI: https://doi.org/10.1017/S0140525X05000129
–691.
Von Bertalanffy, L. General System Theory: Foundations, Development, Applications. New Paperback, 1969. Available online: https://www.abebooks.com/9780807604533/General-System-Theory-Foundations-Development-0807604534/plp
Modularity in Development and Evolution; Schlosser, G.; Wagner, G.P., Eds.; Univ. of Chicago Press: Chicago, 2004; ISBN 978-0-226-73853-6.
Rebek Jr, J. Molecular Recognition with Model Systems. Angew. Chem. Int. Ed. 1990, 29(3), 245–255. DOI: https://doi.org/10.1002/anie.199002451
Bajrami, Z. The Modular Concept of Gene. J. Nat. Sci. Res. 2013, 3, 125–130.
Dawkins, R. The Selfish Gene: 40th Anniversary Edition; Oxford University Press: New York, 2016; ISBN 978-0-19-878860-7.
Bajrami, Z. Informacioni dhe evolucioni modular; Akademia e Shkencave t¨e Shqip¨eris¨e: Tiran¨e, 2024; ISBN 9789928809193.
Wagner, G.P. Homologues, Natural Kinds and the Evolution of Modularity. Amer Zool 1996, 36, 36–43. DOI: https://doi.org/10.1093/icb/36.1.36
Wagner, G.P.; Lynch, V.J. Evolutionary Novelties. Curr. Biol. 2010, 20, R48–52. DOI: https://doi.org/10.1016/j.cub.2009.11.010
Yukalov, V.I.; Sornette, D. Self-Organization in Complex Systems as Decision Making. Adv. Complex Syst. 2014, 17, 1450016,
doi:10.1142/S0219525914500167. DOI: https://doi.org/10.1142/S0219525914500167
Forterre, P.I.P. Darwin’s Goldmine Is Still Open: Variation and Selection Run the World. Front. Cell. Infect. Microbiol. 2012, 2. DOI: https://doi.org/10.3389/fcimb.2012.00106
Kauffman, S.A. The Origins of Order; Oxford University Press: New York, 1993. DOI: https://doi.org/10.1093/oso/9780195079517.001.0001
Mayr, E. Evolution and Anthropology: A Centennial Appraisal; Washington, 1959.
O’hara, R.J. Population Thinking and Tree Thinking in Systematics. Zool. Scripta 1997, 26, 323–329. DOI: https://doi.org/10.1111/j.1463-6409.1997.tb00422.x
Mayr, E. Cause and Effect in Biology. Science 1961, 134, 1501–1506, doi:10.1126/science.134.3489.1501. DOI: https://doi.org/10.1126/science.134.3489.1501
Sober, E. The Nature of Selection: Evolutionary Theory in Philosophical Focus; MIT Press, 1987.
Lapicque, L. L’Excitabilit´e En Fonction Du Temps: La Chronaxie, Sa Signification et Sa Mesure; Presses Universitaires de France, 1926.
Bethe, H.A. Energy Production in Stars. Phys. Rev. 1939, 55, 434–456, doi:10.1103/PhysRev.55.434. DOI: https://doi.org/10.1103/PhysRev.55.434
Pontzer, H.; et al. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans. Curr. Biol. 2016, 26, 410–417, doi:10.1016/j.cub.2015.12.046. DOI: https://doi.org/10.1016/j.cub.2015.12.046
Lherminier, P. La pr´edation informative: vers un nouveau concept d’esp`ece. C. R. Biol. 2018, 341, 209–218,
doi:10.1016/j.crvi.2018.02.004. DOI: https://doi.org/10.1016/j.crvi.2018.02.004
Henao Diaz, L.F.; et al. Macroevolutionary Diversification Rates Show Time Dependency. Proc. Natl. Acad. Sci. 2019, 116, 7403–7408, doi:10.1073/pnas.1818058116. DOI: https://doi.org/10.1073/pnas.1818058116
Harari, Y.N. Sapiens: Hist´oria breve da humanidade; Elsinore, 2013.
Sober, E. The Principle of the Common Cause. In Probability and Causality; Fetzer, J.H., Ed.; Springer: Dordrecht, 1988; pp. 211–228. DOI: https://doi.org/10.1007/978-94-009-3997-4_10
Roederer, J.G. On the Concept of Information and Its Role in Nature. Entropy 2003, 5, 3–33, doi:10.3390/e5010003. DOI: https://doi.org/10.3390/e5010003
Penrose, R. Cycles of Time: An Extraordinary New View of the Universe; Vintage, 2012.
Bell, J.S. On the Einstein Podolsky Rosen Paradox. Physics 1964, 1, 195–200, doi:10.1103/PhysicsPhysiqueFizika.1.195. DOI: https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
Simmons, H. An Introduction to Category Theory; Cambridge University Press, 2011; ISBN 978-1-107-01087-1.
Kolmogorov, A. List of Conference Participants. J. Cult. Econ. 1995, 19, 95–101, doi:10.1007/BF01074199. DOI: https://doi.org/10.1007/BF01074199
Lloyd, S. Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos; Knopf Doubleday, 2007; ISBN
-4000-3386-1.
Crotty, M. The Foundations of Social Research: Meaning and Perspective in the Research Process; Routledge, 2020; ISBN 978-1-00-311570-0. DOI: https://doi.org/10.4324/9781003115700-1

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zyri Bajrami

This work is licensed under a Creative Commons Attribution 4.0 International License.