Information theory of non-equilibrium states


  • Melvin M. Vopson University of Portsmouth, School of Mathematics and Physics, Portsmouth, PO1 3HF, United Kingdom



non-equilibrium information theory;, thermal fluctuations;, digital bits;, information entropy;, information theory


The Shannon's information theory of equilibrium states has already underpinned fundamental progress in a diverse range of subjects such as computing, cryptography, telecommunications, physiology, linguistics, biochemical signaling, mathematics and physics. Here we undertake a brief examination of the concept of information theory of non-equilibrium states. The fundamental approach proposed here has the potential to enable new applications, research methods and long-term innovations, including the principle of extracting digital information from non-equilibrium states and the development of predictive protocols of mutation dynamics in genome sequences.


C.E. Shannon, A mathematical theory of communication, The Bell System Technical Journal, Vol. 27, pp. 379–423 (1948). DOI:

M.M. Vopson, The mass-energy-information equivalence principle, AIP Adv. 9, 095206 (2019). DOI:

H. J. Kreuzer, Nonequilibrium Thermodynamics and Its Statistical Foundations (Oxford University Press, Oxford, 1981)

P. Zikopoulos, D. deRoos, K. Parasuraman, T. Deutsch, J. Giles, and D. Corrigan, Harness the Power of Big Data: The IBM Big Data Platform (McGraw-Hill Professional, New York, 2012), ISBN: 978-0-07180818-7.

M. M. Vopson, The information catastrophe, AIP Adv. 10, 085014 (2020). DOI:

T.A. Reichert, D.N. Cohen, A.K.C. Wong, An application of information theory to genetic mutations and the matching of polypeptide sequences, J. Theoret. Biol. 42, 245-261 (1973). DOI:

C.Cosmi, V. Cuomo, M. Ragosta, M.F. Macchiato, Characterization of nucleotide sequences using maximum entropy techniques, J. Theoret. Biol. 147, 423-432 (1990). DOI:

H. Herzel, W. Ebeling, A.O. Schmitt, Entropies of biosequences: The role of repeats, Phys. Rev. E 50, 5061-5071 (1994). DOI:

W. Li, K. Kaneko, Long-range correlations and partial 1/f spectrum in a noncoding DNA sequence, Europhys. Lett. 17(7), 655-660 (1992). DOI:

C.K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, F. Sciortino, M. Simon, H.E. Stanley, Long-range correlations in nucleotide sequences, Nature 356, 168-170 (1992). DOI:

L. Wentian, G.M. Thomas, K. Kunihiko, Understanding long-range correlations in DNA sequences, Physica D: Nonlinear Phenomena, Volume 75, Issues 1–3, 392-416 (1994) DOI:

R. Roman-Roldan, P. Bernaola-Galván, J. Oliver, Application of information theory to DNA sequence analysis: A review, Pattern Recognition, Volume 29, Issue 7, (1996) DOI:

A. Hariri, B. Weber, J. Olmsted III, On the validity of Shannon-information calculations for molecular biological sequences, J. Theoret. Biol. 147, 235-254 (1988). DOI:

S. Vinga, Information theory applications for biological sequence analysis, Briefings in Bioinformatics, vol. 15 (3) 376-389 (2014). DOI:

J. A. Tenreiro Machado, Shannon Entropy Analysis of the Genome Code, Mathematical Problems in Engineering, Article ID 132625 (2012) DOI:

F. Fernandes, A.T. Freitas, J.S. Almeida, S. Vinga, Entropic Profiler – detection of conservation in genomes using information theory, BMC Research Notes, 2:72 (2009) doi:10.1186/1756-0500-2-72 DOI:

J.A. Tenreiro Machado, António C. Costa, Maria Dulce Quelhas, Shannon, Rényie and Tsallis entropy analysis of DNA using phase plane, Nonlinear Analysis: Real World Applications, Volume 12, Issue 6, 3135-3144 (2011) DOI:

A. Thomas, S. Barriere, L. Broseus, J. Brooke, C. Lorenzi, J.P. Villemin, G. Beurier, R. Sabatier, C. Reynes, A. Mancheron, W. Ritchie, GECKO is a genetic algorithm to classify and explore high throughput sequencing data, Commun. Biol. 2, 222 (2019). DOI:

M. Vopson, S.C. Robson, A new method to study genome mutations using the information entropy, Physica A: Statistical Mechanics and its Applications, Volume 584, 126383 (2021). DOI:

M.M. Vopson, A Possible Information Entropic Law of Genetic Mutations. Appl. Sci. 2022, 12, 6912. DOI:

M.M. Vopson, S. Lepadatu, The second law of information dynamics, in-press AIP Advances, vol. 12, issue 7 July (2022). DOI:

Futuyma, D.J. Evolutionary Biology, 2nd ed.; Sinauer: Sunderland, MA, USA, 1986.




How to Cite

Vopson, M. M. (2023). Information theory of non-equilibrium states. IPI Letters, 1, 22–29.