BORIS – Micromagnetic, Spin Transport and Multiscale Atomistic Software for Modelling Magnetic Information Storage


  • Serban Lepadatu University of Central Lancashire



BORIS; , Atomistic modelling of magnetic information storage;, Skyrmions; , Multi-GPU computations;


A brief review of BORIS is given here, together with a review of recent works using this software, including applications to modelling magnetic hard-disk-drive read heads, ultrafast magnetization processes, computation of thermodynamic equilibrium states using Monte Carlo algorithms, and modelling skyrmions as information carriers. BORIS is a state-of-the-art multi-physics and multi-scale research software designed to solve three-dimensional magnetization dynamics problems, coupled with a self-consistent charge and spin transport solver, heat flow solver with temperature-dependent material parameters, and elastodynamics solver including thermoelastic and magnetoelastic/magnetostriction effects, in arbitrary multi-layered structures and shapes. Both micromagnetic and atomistic models are implemented, also allowing multi-scale modelling where computational spaces may be configured with multiple simultaneous micromagnetic and atomistic discretization regions. The software allows multi-GPU computations on any number of GPUs in parallel, in order to accelerate simulations and allow for larger problem sizes compared to single-GPU computations – this is the first magnetization dynamics software to allow multi-GPU computations, enabling large problems encompassing billions of cells to be simulated with unprecedented performance.


S. Lepadatu, Boris computational spintronics — High performance multi-mesh magnetic and spin transport modelling software. J. Appl. Phys. 128, 243902 (2020). DOI:

T.L. Gilbert, A Lagrangian formulation of the gyromagnetic equation of the magnetic field. Phys. Rev. 100, 1243 (1955).

D.A. Garanin, Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets. Phys. Rev. B 55, 3050 (1997). DOI:

D.A. Garanin and O. Chubykalo-Fesenko, Thermal fluctuations and longitudinal relaxation of single-domain magnetic particles at elevated temperatures. Phys. Rev. B 70, 212409 (2004). DOI:

R.F.L. Evans et al., Stochastic form of the Landau-Lifshitz-Bloch equation. Phys. Rev. B 85, 014433 (2012). DOI:

S. Zhang and Z. Li, Roles of Nonequilibrium Conduction Electrons on the Magnetization Dynamics of Ferromagnets. Phys. Rev. Lett. 93, 127204 (2004). DOI:

S. Lepadatu, Effect of inter-layer spin diffusion on skyrmion motion in magnetic multilayers. Scientific Reports 9, 9592 (2019). DOI:

C.R. MacKinnon, S. Lepadatu, T. Mercer, and P.R. Bissell “Role of an additional interfacial spin-transfer torque for current-driven skyrmion dynamics in chiral magnetic layers” Physical Review B 102, 214408 (2020). DOI:

M.I. Dyakonov and V.I. Perel, Possibility of orienting electron spins with current. JETP Lett. 13, 467-469 (1971).

J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996). DOI:

S. Lepadatu, Unifed treatment of spin torques using a coupled magnetisation dynamics and three-dimensional spin current solver. Scientific Reports 7, 12937 (2017). DOI:

J.E. Hirsch, Spin Hall Effect. Phys. Rev. Lett. 83, 1834 (1999). DOI:

Y. Tserkovnyak, A. Brataas, and G.E.W. Bauer, Enhanced Gilbert Damping in Thin Ferromagnetic Films. Phys. Rev. Lett. 88, 117601 (2002). DOI:

Y. Tserkovnyak and M. Mecklenburg, Electron transport driven by nonequilibrium magnetic textures. Phys. Rev. B 77, 134407 (2008). DOI:

S. Zhang and S.S.-L. Zhang, Generalization of the Landau-Lifshitz-Gilbert Equation for Conducting Ferromagnets. Phys. Rev. Lett. 102, 086601 (2009). DOI:

S. Lepadatu and A. Dobrynin, “Self-consistent computation of spin torques and magneto-resistance in tunnel junctions and magnetic read-heads with metallic pinhole defects” Journal of Physics: Condensed Matter 35, 115801 (2023). DOI 10.1088/1361-648X/acb2a6 DOI:

S. Lepadatu, Interaction of magnetization and heat dynamics for pulsed domain wall movement with Joule heating. J. Appl. Phys. 120, 163908 (2016). DOI:

U. Atxitia, and O. Chubykalo-Fesenko, Ultrafast magnetization dynamics rates within the Landau-Lifshitz-Bloch model. Phys. Rev. B 84, 144414 (2011). DOI:

S. Lepadatu, Efficient computation of demagnetizing fields for magnetic multilayers using multilayered convolution. J. Appl. Phys. 126, 103903 (2019). DOI:

I.A. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241-255 (1958). DOI:

T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960). DOI:

B. Heinrich et al., Bilinear and biquadratic exchange coupling in bcc Fe/Cu/Fe trilayers: Ferromagnetic-resonance and surface magneto-optical Kerr-effect studies. Phys. Rev. B 47, 5077 (1993). DOI:

S. Lepadatu, Effective field model of roughness in magnetic nano-structures. J. Appl. Phys. 118, 243908 (2015). DOI:

Source code repository: Accessed on December 21st, 2023.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, Scalable Parallel Programming with CUDA. ACM Queue 6, 40-53 (2008). DOI:

S. Lepadatu, “Accelerating micromagnetic and atomistic simulations using multiple GPUs” J. Appl. Phys. 134, 163903 (2023). DOI:

E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250 (1996). DOI:

S. Lepadatu “Emergence of transient domain wall skyrmions after ultrafast demagnetization” Physical Review B 102, 094402 (2020). DOI:

R. Cheng, M. Li, A. Sapkota, A. Rai, A. Pokhrel, T. Mewes, C. Mewes, D. Xiao, M. De Graef, and V. Sokalski, Phys. Rev. B 99, 184412 (2019). DOI:

S. Lepadatu “Micromagnetic Monte Carlo method with variable magnetization length based on the Landau–Lifshitz–Bloch equation for computation of large-scale thermodynamic equilibrium states” Journal of Applied Physics 130, 163902 (2021). DOI:

S. Lepadatu, G. Mckenzie, T. Mercer, C.R. MacKinnon, P.R. Bissell, “Computation of magnetization, exchange stiffness, anisotropy, and susceptibilities in large-scale systems using GPU-accelerated atomistic parallel Monte Carlo algorithms” Journal of Magnetism and Magnetic Materials 540, 168460 (2021). DOI:

K. Gerlinger, B. Pfau, F. Büttner, M. Schneider, L.-M. Kern, J. Fuchs, D. Engel, C.M. Günther, M. Huang, I. Lemesh et al., “Application concepts for ultrafast laser-induced skyrmion creation and annihilation” Appl. Phys. Lett. 118, 192403 (2021). DOI:

M.M. Vopson and S.Lepadatu, “Second law of information dynamics” AIP Advances 12, 075310 (2022). DOI:

S. Lepadatu, “All-Optical Magnetothermoelastic Skyrmion Motion” Physical Review Applied 19, 044036 (2023). DOI:

C.R. MacKinnon, K. Zeissler, S. Finizio, J. Raabe, C.H. Marrows, T. Mercer, P.R. Bissell, and S. Lepadatu, “Collective skyrmion motion under the influence of an additional interfacial spin‑transfer torque” Scientific Reports 12, 10786 (2022). DOI:




How to Cite

Lepadatu, S. (2023). BORIS – Micromagnetic, Spin Transport and Multiscale Atomistic Software for Modelling Magnetic Information Storage. IPI Letters, 1, 84–91.