Reality Reloaded: The Scientific Case for a Simulated Universe


ISBN 978-1-80517-057-0 (print)

ISBN 978-1-80517-058-7 (ebook)

140 pages paperback

  The only book that offers a scientific case supporting the simulated universe theory   

Buy the book now to support our research efforts and help find a way out of the matrix.

Print book (paperback)

Reality Reloaded: The Scientific Case for a Simulated Universe


Buy now



The book "Reality Reloaded: The Scientific Case for a Simulated Universe" caters to a diverse audience, including scientists, academics, students, and the general public.

The simulated universe hypothesis postulates that our reality is a simulated construct, much like a sophisticated computer programme or virtual reality simulation. In this scenario, the physical laws governing our reality are algorithms, and our tangible experiences are simply generated by the computational processes of an immensely advanced system.

While inherently speculative, the simulated universe theory has gained traction due to rapid advancements in technology, the emergence of powerful computers capable of running complex simulations, virtual reality applications becoming increasingly sophisticated and immersive, certain philosophical considerations, and recent scientific developments in the field of information physics.

Within the scientific community, the concept of a simulated universe has sparked both fascination and skepticism. The key question remains: Can we find scientific evidence to support or refute the simulated universe hypothesis?

Answering this key question is the main focus of the book. The author delves into the connections between information science, technological advancements, cutting-edge concepts in physics, and the plausibility of the simulated universe hypothesis, offering unique perspectives and novel scientific arguments that appear to support the hypothesis. The book is very stimulating and invites further research in the fascinating field of information physics.

The book should be referenced as:

M.M. Vopson, Reality Reloaded: The Scientific Case for a Simulated Universe, IPI Publishing, ISBN 978-1-80517-057-0, (2023).

All rights reserved. No part of this book may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying, digital scanning, recording, or any information storage and retrieval system, without permission in writing from the publisher. Quotes of less than 500 words are permissible, with proper credit given.

Published by IPI Publishing

Hampshire, UK


Copyright © 2023 by Melvin M. Vopson



[1] R. J. T. Morris and B. J. Truskowski, "The evolution of storage systems," in IBM Systems Journal, vol. 42, no. 2, pp. 205-217, 2003, doi: 10.1147/sj.422.0205.

[2] Vopson, M. (2021). The world’s data explained: How much we’re producing and where it’s all stored. The Conversation [Online]. Available:



[5] Melvin M. Vopson; The information catastrophe. AIP Advances 1 August 2020; 10 (8): 085014.

[6] Melvin M. Vopson; Erratum: “The information catastrophe” [AIP Adv. 10, 085014 (2020)]. AIP Advances 1 September 2020; 10 (9): 099905.

[7] ] P. Zikopoulos, D. deRoos, K. Parasuraman, T. Deutsch, J. Giles, D. Corrigan, Harness the Power of Big Data: The IBM Big Data Platform, New York: McGraw-Hill Professional, (2012) ISBN 978-0-07180818-7.


[9] E. Whittaker, Eddington's Theory of the Constants of Nature, The Mathematical Gazette, 29 (286): 137–144 (1945).

[10] A. Friedman, On the Curvature of Space, General Relativity and Gravitation 31, 1991–2000 (1999).

[11] S. Eidelman et al. (Particle Data Group) "The Review of Particle Physics", Physics Letters B592, 1 (2004).

[12] J.R. Gott III, M. Jurić, D. Schlegel, F. Hoyle, M. Vogeley, M. Tegmark, N. Bahcall, J. Brinkmann, A Map of the Universe, The Astrophysical Journal. 624 (2): 463–484, (2005).

[13] The abundance of elements in the universe by weight percentage provided by Mathematica's ElementData function from Wolfram Research, Inc


[14] Melvin M. Vopson; Estimation of the information contained in the visible matter of the universe. AIP Advances 1 October 2021; 11 (10): 105317.

[15] Baudrillard, Jean (1981). Simulacres et simulation. Paris: Galilée. ISBN 2-7186-0210-4.

[16] Whitworth, B. (2007), The physical world as a virtual reality: a prima facie case, Research Letters in the Information and Mathematical Sciences, 11, 44-60.

[17] Hans Moravec (

[18] Nick Bostrom, Are you living in a computer simulation?, Philosophical Quarterly (2003) Vol. 53, No. 211, pp. 243-255.

[19] S. Lloyd, Programming the universe: a quantum computer scientist takes on the cosmos, (2006) eISBN-13: 978-0-307-26471-8.


[21] Einstein, A., B. Podolsky, and N. Rosen, 1935, “Can quantum-mechanical description of physical reality be considered complete?”, Physical Review, 47: 777–780.

[22] P.A.R. Ade et. al, Planck 2013 results. XVI. Cosmological parameters Astron. Astrophys. 571 A16 (2014).

[23] Pauli, W. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren, Zeitschrift für Physik 31 (1): 765–783 (1925)doi:10.1007/BF02980631.

[24] Stephen C. Meyer, Chapter 20 - The Cambrian Information Explosion - Evidence for Intelligent Design, pp. 371 – 392 in Debating Design: From Darwin to DNA, Cambridge University Press (2004). DOI:

[25] Stephen C. Meyer, “DNA by Design: An Inference to the Best Explanation for the Origin of Biological Information,” Rhetoric and Public Affairs 1, no. 4, (1998) 519-556, 528-530.

[26] C.E. Shannon, A mathematical theory of communication, The Bell System Technical Journal, Vol. 27, pp. 379–423 (1948).

[27] A.O. Schmitt, H. Herzel, Estimating the Entropy of DNA Sequences, Journal of Theoretical Biology, Vol.188 (3), 369-377 (1997).

[28] M. Vopson, S.C. Robson, A new method to study genome mutations using the information entropy, Physica A: Statistical Mechanics and its Applications, Volume 584, 126383 (2021).

[29] R. Landauer, Irreversibility and heat generation in the computing process, IBM Journal of Research and Development, 5 (3): 183–191, (1961).

[30] R. Landauer, The physical nature of information, Phys. Lett. A, Vol. 217, issue 4-5, 188 - 193 (1996).

[31] J. Hong, B. Lambson, S. Dhuey, J. Bokor, Experimental test of Landauer's principle in single-bit operations on nanomagnetic memory bits, Science Advances. 2 (3) (2016).

[32] G. Rocco, B. Enrique, M. Satoru, Herre van der Zant, L. Fernando, Quantum Landauer erasure with a molecular nanomagnet, Nature Physics, 14: 565–568 (2018).

[33] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer's principle linking information and thermodynamics, Nature, 483, 187–189 (2012).

[34] Y. Jun, M. Gavrilov, J. Bechhoefer, High-Precision Test of Landauer's Principle in a Feedback Trap, Physical Review Letters, 113 (19) 190601 (2014).

[35] M.M. Vopson, The mass-energy-information equivalence principle, AIP Adv. 9, 095206 (2019).

[36] M.M. Vopson, The information content of the universe and the implications for the missing Dark Matter, June 2019 DOI: 10.13140/RG.2.2.19933.46560.

[37] J.A. Wheeler, Information, Physics, Quantum: the search for links, in W.H. Zurek (ed.) Complexity, Entropy, and the Physics of Information, Addison Wesley, Redwood City, page 3 (1990).

[38] J. Ladyman, S. Presnell, A.J.Short, B. Groisman, The connection between logical and thermodynamic irreversibility, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, Vol. 38, Issue 1, 58-79 (2007).

[39] Anders S. G. Andrae, Tomas Edler, On Global Electricity Usage of Communication Technology: Trends to 2030, Challenges, 6 (1), 117-157 (2015).

[40] Key World Energy Statistics 2019, International Energy Agency, 26 September 2019. pp. 6, 36. (2019).

[41] G. Deutscher, The Entropy Crisis, World Scientific: Hackensack, NJ, USA, (2008).

[42] E. Bormashenko, Entropy Harvesting, Entropy, 15, 2210-2217 (2013).

[43] L.B. Kish, Gravitational mass of information? Fluct. Noise Lett., 7, C51–C68 (2007).

[44] L. Herrera, The mass of a bit of information and the Brillouin’s principle, Fluctuation and Noise Letters, Vol. 13, No. 1 (2014) 1450002.

[45] E. Bormashenko, The Landauer Principle: Re–Formulation of the Second Thermodynamics Law or a Step to Great Unification, Entropy, 21, 918 (2019).

[46] L. Herrera, Landauer Principle and General Relativity, Entropy, 22, 340 (2020).

[47] L.B. Kish, C.G. Granqvist, Does information have mass? Proc. IEEE, vol. 101, issue 9, 1895–1899 (2013).

[48] M. Loferer-Kröbbacher, J. Klima, R. Psenner, Determination of Bacterial Cell Dry Mass by Transmission Electron Microscopy and Densitometric Image Analysis, Applied and Environmental Microbiology, p. 688–694 (1998).

[49] J.C. Kapteyn, First attempt at a theory of the arrangement and motion of the sidereal system, Astrophysical Journal, 55: 302–327 (1922).

[50] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933).

[51] S. Smith, The mass of the Virgo cluster, Astrophys. J. 83, 23–30 (1936).

[52] E. Holmberg, A Study of double and multiple galaxies together with inquiries into some general metagalactic problems, Ann. Observatory of Lund 6, 3–173 (1937).

[53] K.C. Freeman, On the Disks of Spiral and S0 Galaxies, The Astrophysical Journal. 160: 811–830 (1970).

[54] V.C. Rubin, W.K. Ford, Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, The Astrophysical Journal, 159: 379–403 (1970).

[55] V. Rubin, W.K. Ford, N. Thonnard, Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R = 4kpc) to UGC 2885 (R = 122kpc), The Astrophysical Journal. 238: 471 (1980).

[56] E. Corbelli, P. Salucci, The extended rotation curve and the dark matter halo of M33, Monthly Notices of the Royal Astronomical Society, 311 (2): 441–447 (2000).

[57] Phillip D. Mannheim, Alternatives to Dark Matter and Dark Energy, Progress in Particle and Nuclear Physics. 56 (2): 340–445 (2006).

[58] Austin Joyce et al. Beyond the Cosmological Standard Model, Physics Reports. 568: 1–98 (2015).

[59] Kazuya Koyama, Cosmological tests of modified gravity, Rep. Prog. Phys. 79 046902 (2016)

[60] G. Kane, S. Watson, Dark Matter and LHC: what is the Connection? Modern Physics Letters A. 23 (26): 2103–2123 (2008).

[61] P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D. 84 (1): 014028 (2011).

[62] G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints, Physics Reports. 405 (5–6): 279–390 (2005).

[63] V. Trimble, Existence and nature of dark matter in the universe, Annual Review of Astronomy and Astrophysics. 25: 425–472 (1987).

[64] P. Salucci, The distribution of dark matter in galaxies, Astron Astrophys Rev (2019) 27: 2.

[65] G.M. Eadie. W.E. Harris, The Astrophysical Journal, Volume 829, Number 2 (2016).

[66] C. J. Conselice, A. Wilkinson, K. Duncan, A. Mortlock, The Evolution of Galaxy Number Density at z < 8 and its Implications, The Astrophysical Journal. 830 (2): 83 (2016).

[67] L. Szilard, Uber die Enfropieuerminderung in einem thermodynamischen System bei Eingrifen intelligenter Wesen, Zeitschrift fur Physik, vol. 53, 840-856 (1929).

[68] The Sorting Demon of Maxwell, Nature 20, 126 (1879).

[69] R. Landauer, Wanted: a physically possible theory of physics, IEEE Spectrum, Vol. 4, Issue 9, 105 – 109 (1967).

[70] S. Lloyd, Computational Capacity of the Universe, Phys. Rev. Lett. 88, 237901 (2002).

[71] S. Lloyd, Ultimate physical limits to computation, Nature, vol. 406, 1047–1054 (2000).

[72] R. Landauer, Dissipation and noise immunity in computation and communication, Nature, vol. 335, 779–784 (1988).

[73] J.D. Bekenstein, Black holes and information theory, Contemporary Physics, 45:1, 31-43, (2004).

[74] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D, vol. 7, No. 8, 2333 (1973).

[75] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).

[76] P.C.W. Davies, Why is the physical world so comprehensible? in W.H. Zurek (ed.), Complexity, Entropy, and the Physics of Information, Addison Wesley, Redwood City, page 61. (1990).

[77] R.A. Treumann, Evolution of the information in the universe, Astrophysics and Space Science vol. 201, 135–147(1993).

[78] M.P. Gough, Information Equation of State, Entropy, 10, 150-159 (2008).

[79] I.K. MacKenzie, Experimental Methods of Annihilation Time and Energy Spectrometry, Positron Solid-State Physics, Soc. Italiana di Fisica, Bologna, Italy, LXXXIII Corso, pp 196– 264 (1983).

[80] P. G. Coleman. Positron Beams and their applications, chapter 2, pages 11–40. World Scientific, Singapore, (2000).

[81] D. G. Costello, D. E. Groce, D. F. Herring, and J. Wm. McGowan. Evidence for the negative work function associated with positrons in gold, Physical Review B, 5(4):1433–1436 (1972).

[82] A. Vehanen and J. Mäkinen. Thin films for slow positron generation. Applied Physics A: Solids and Surfaces, 36:97–101 (1985).

[83] Peter J. Schultz and K. G. Lynn. Interaction of positron beams with surfaces, thin films, and interfaces. Reviews of Modern Physics, 60(3):701–779 (1988).

[84] D. M. Chen, K. G. Lynn, R. Pareja, and Bent Nielsen. Measurement of positron reemission from thin single-crystal W(100) films. Physical Review B, 31(7):4123–4130 (1985).

[85] A. Goodyear, A. P. Knights, and P. G. Coleman. Energy spectroscopy of positrons re-emitted from polycrystalline tungsten. Journal of Physics:Condensed Matter, 6(45):9601–9611 (1994).

[86] C. Hugenschmidt, B. Straßer, and K. Schreckenbach. Investigation of positron work function and moderation efficiency of Ni, Ta, Pt and W(1 0 0), Applied Surface Science, 194(1–4):283–286 (2002).

[87] M.J. Berger, J.S. Coursey, M.A. Zucker and J. Chang, Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions, NIST Physical Measurements Laboratory. Available at:

[88] Melvin M. Vopson; Experimental protocol for testing the mass–energy–information equivalence principle. AIP Advances 1 March 2022; 12 (3): 035311.


[90] Melvin M. Vopson, S. Lepadatu; Second law of information dynamics. AIP Advances 1 July 2022; 12 (7): 075310.

[91] Penzias, A. A., Wilson, R. W., A Measurement of Excess Antenna Temperature at 4080 Mc/s, The Astrophysical Journal, 142 (1): 419–421 (1965). doi:10.1086/148307.

[92] Fixsen, D. J., The Temperature of the Cosmic Microwave Background, The Astrophysical Journal 707 (2): 916–920 (2009). doi:10.1088/0004-637X/707/2/916.

[93] Harrison, E. R., Fluctuations at the threshold of classical cosmology, Physical Review D. 1 (10): 2726–2730 (1970). doi:10.1103/PhysRevD.1.2726.

[94] Peebles, P. J. E., Yu, J. T., Primeval Adiabatic Perturbation in an Expanding Universe, Astrophysical Journal. 162: 815–836 (1970). doi:10.1086/150713.

[95] WMAP Collaboration: Verde, L., Peiris, H. V., Komatsu, E., Nolta, M. R, Bennett, C. L., Halpern, M., Hinshaw, G., et al,, First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, Astrophysical Journal Supplement Series 148 (1): 175–194 (2003). doi:10.1086/377226.

[96] S. Lepadatu, Micromagnetic Monte Carlo method with variable magnetization length based on the Landau–Lifshitz–Bloch equation for computation of large-scale thermodynamic equilibrium states, Journal of Applied Physics 130, 163902 (2021).

[97] Futuyma, D. J. Evolutionary Biology 2nd edition (Sinauer, 1986).

[98] David L. Stern, Virginie Orgogozo, The loci of evolution: How predictable is genetic evolution? Evolution 62-9: 2155–2177 (2008).

[99] Vopson, M.M. A Possible Information Entropic Law of Genetic Mutations. Appl. Sci. (2022), 12, 6912.











[110] GENIES software free download:

[111] Genetic Information Entropy Spectrum (GENIES) User manual, 10 December (2020), DOI: 10.13140/RG.2.2.36557.46569.

[112] Kacian D.L., Mills D.R., Kramer F.R., Spiegelman S., A replicating RNA molecule suitable for a detailed analysis of extracellular evolution and replication, Proc. Nat. Acad. Sci. 69 (10): 3038-3042 (1972).

[113] G.L. Miessler and D.A. Tarr, Inorganic Chemistry (Prentice-Hall, 2nd edn. (1999), pp. 358–360, ISBN 0138418918.

[114] I.N. Levine, Quantum Chemistry (Prentice-Hall, 4th edition) pp. 303–30 (1991), ISBN 0205127703.

[115] Boyd, R. A quantum mechanical explanation for Hund's multiplicity rule. Nature 310, 480–481 (1984).



The author acknowledges the financial support received for this research from the University of Portsmouth and the Information Physics Institute.

The author is also deeply grateful to all his supporters and would like to acknowledge the generous contributions received to his research in the field of information physics, from the following donors and crowd-funding backers, listed in alphabetical order:

Alban Frachisse, Alexandra Lifshin, Allyssa Sampson, Ana Leao-Mouquet, Andre Brannvoll, Andrews83, Angela Pacelli, Aric R Bandy, Ariel Schwartz, Arne Michael Nielsen, Arvin Nealy, Ash Anderson, Barry Anderson, Benjamin Jakubowicz, Beth Steiner, Bruce McAllister, Caleb M Fletcher, Chris Ballard, Cincero Rischer, Colin Williams, Colyer Dupont, Cruciferous1, Daniel Dawdy, Darya Trapeznikova, David Catuhe, Dirk Peeters, Dominik Cech, Kenneth Power, Eric Rippingale, Ethel Casey, Ezgame Workplace, Frederick H. Sullenberger III, Fuyi Zhou, George Fletcher, Gianluca Carminati, Gordo TEK, Graeme Hewson, Graeme Kirk, Graham Wilf Taylor, Heath McStay, Heyang Han, Ian Wickramasekera, Ichiro Tai, Inspired Designs LLC, Ivaylo Aleksiev, Jamie C Liscombe, JAN Stehlak, Jason Huddleston, Jason Olmsted, Jennifer Newsom, Jerome Taurines, John Jones, John Vivenzio, John Wyrzykowski, Josh Hansen, Joshua Deaton, Josiah Kuha, Justin Alderman, Kamil Koper, Keith Baton, Keith Track, Kristopher Bagocius, Land Kingdom, Lawrence Zehnder, Lee Fletcher, Lev X, Linchuan Wang, Liviu Zurita, Loraine Haley, Manfred Weltenberg, Mark Matt Harvey-Nawaz, Matthew Champion, Mengjie Ji, Michael Barnstijn, Michael Legary, Michael Stattmann, Michelle A Neeshan, Michiel van der Bruggen, Molly R McLaren, Mubarrat Mursalin, Nick Cherbanich, Niki Robinson, Norberto Guerra Pallares, Olivier Climen, Pedro Decock, Piotr Martyka, Ray Rozeman, Raymond O’Neill, Rebecca Marie Fraijo, Robert Montani, Shenghan Chen, Sova Novak, Steve Owen Troxel, Sylvain Laporte, Tamás Takács, Tilo Bohnert, Tomasz Sikora, Tony Koscinski, Turker Turken, Vincent Auteri, Walter Gabrielsen III, Will Strinz, William Beecham, William Corbeil, Xinyi Wang, Yanzhao Wu, Yves Permentier, Zahra Murad and Ziyan Hu.

Finally, the author would like to thank all the Research Fellows of the Information Physics Institute for their support, passion, and contributions to this research field. All existing IPI Research Fellows are listed here in alphabetical order:

Alexander Robinson, Arend van Campen, Barry Robson, Christian Howard, Diego Manzoni, Doug Matzke, Gary J Duggan, George Ageyev, Gerry McGovern, Gianluca Carminati, Greg Ryan Quinnell, Iain Robert Franklin, Ian Muehlenhaus, John G. Nicholson, John Ingham Davies, Joshua Deaton, Joshua Watson, Juan Carlos Buitrago Moreno, Kyle Haines, Lance Marembo, Marco Gericke, Mark Summers, Matthew Champion, Matthew Schenk, Matthieu Graux, Max Karl Goff, Michael Legary, Mubarrat Mahin Mursalin, Olivier Denis, Robert J Toogood, Rodney Bartlett, Steven Johnston, Theophanes Raptis, Trevor Page, Virgil Priscu and Yalitza Therly Ramos Gil.