
ISSN 2976 - 730X
IPI Letters 2024,Vol 2 (2):14-18
https://doi.org/10.59973/ipil.92

Received: 2024-05-28
Accepted: 2024-06-05

Published: 2024-06-07

Article

Note for the P versus NP Problem

Frank Vega1,∗

1Information Physics Institute, Miami, Florida, United States

∗Corresponding author: vega.frank@gmail.com

Abstract - P versus NP is considered as one of the most fundamental open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially mentioned in 1955
from a letter written by John Nash to the United States National Security Agency. However, a precise statement
of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that
date, all efforts to find a proof for this problem have failed. Another major complexity class is NP-complete.
It is well-known that P is equal to NP under the assumption of the existence of a polynomial time algorithm
for some NP-complete. We show that the Monotone Weighted Xor 2-satisfiability problem (MWX2SAT) is
NP-complete and P at the same time. Certainly, we make a polynomial time reduction from every directed
graph and positive integer k in the K-CLOSURE problem to an instance of MWX2SAT. In this way, we show that
MWX2SAT is also an NP-complete problem. Moreover, we create and implement a polynomial time algorithm
which decides the instances of MWX2SAT. Consequently, we prove that P = NP.

Keywords - Complexity classes; Boolean formula; Graph; Completeness; Polynomial time.

1 Introduction

P versus NP is one of the most important and challenging problems in computer science [1]. It
asks whether every problem whose solution can be quickly verified can also be quickly solved.
The informal term “quickly” here refers to the existence of an algorithm that can solve the task in
polynomial time [1]. The general class of problems for which such an algorithm exists is called P or
“class P”[1].
Another class of problems called NP, which stands for “nondeterministic polynomial time”, is defined
by the property that if an input to a problem is a solution, then it can be quickly verified [1]. The P
versus NP problem asks whether P equals NP. If it turns out that P , NP, which is widely believed
to be the case, it would mean that there are problems in NP that are harder to compute than to verify
[1]. This would have profound implications for various fields, including cryptography and artificial
intelligence [2].
Solving the P versus NP problem is considered to be one of the greatest challenges in computer
science [1]. A solution would have a profound impact on our understanding of computation and
could lead to the development of new algorithms and techniques that could solve many of the world’s
most pressing problems [1]. The problem is so difficult that it is considered to be one of the seven
Millennium Prize Problems, which are a set of seven unsolved problems that have been offered a 1
million prize for a correct solution [1].

https://doi.org/10.59973/ipil.92
mailto:vega.frank@gmail.com

P vs NP

2 Materials and methods

NP-complete problems are a class of computational problems that are at the heart of many important
and challenging problems in computer science. They are defined by the property that they can be
quickly verified, but there is no known efficient algorithm to solve them. This means that finding
a solution to an NP-complete problem can be extremely time-consuming, even for relatively small
inputs. In computational complexity theory, a problem is considered NP-complete if it meets the
following two criteria:

1. Membership in NP: A solution to an NP-complete problem can be verified in polynomial time.
This means that there is an algorithm that can quickly check whether a proposed solution is
correct [3].

2. Reduction to NP-complete problems: Any problem in NP can be reduced to an NP-complete
problem in polynomial time. This means that any NP-problem can be transformed into an
NP-complete problem by making a small number of changes [3].

If it were possible to find an efficient algorithm for solving any one NP-complete problem, then this
algorithm could be used to solve all NP problems in polynomial time. This would have a profound
impact on many fields, including cryptography, artificial intelligence, and operations research [2].
Here are some examples of NP-complete problems:

• Boolean satisfiability problem (SAT): Given a Boolean formula, determine whether there is an
assignment of truth values to the variables that makes the formula true [4].

• K-CLOSURE problem: Given a directed graph G = (V,A) (V is the set of vertices and A is the
set of edges) and positive integer k, determine whether there is a set V′ of at most k vertices such
that for all (u, v) ∈ A either u ∈ V′ or v < V′ (see reference [Queyranne, 1976] from the Johnson
and Garey book) [4]. Note that in this problem the phrase “either u ∈ V′ or v < V′” does mean
the same as (u ∈ V′ and v ∈ V′) or (u < V′ and v < V′) since the logical implication of the words
“either ... or ...” indicates that exactly one of the following statements can be true.

These are just a few examples of the many NP-complete problems that have been studied and have
a close relation with our current result. On the one hand, a vertex cover (sometimes called a node
cover) of a graph G is a subset of its vertices, denoted by V′, such that every edge in G has at least one
endpoint in V′. On the other hand, an independent set V′ is a subset of vertices in a graph G where
no two vertices in the set are connected by an edge.

Definition 2.1. Independent Vertex Cover
INSTANCE: An undirected graph G = (V,E) and a positive integer k.
QUESTION: Is there set V′ of at most k vertices such that V′ is both a vertex cover and an independent set

in G?
REMARKS: This problem can be easily solved in polynomial time [4].

In this work, we show there is an NP-complete problem that can be solved in polynomial time using
the previous problem. Consequently, we prove that P is equal to NP.

3 Results

Formally, an instance of Boolean satisfiability problem (SAT) is a Boolean formula ϕ which is
composed of:

1. Boolean variables: x1, x2, . . . , xn;

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as
∧(AND), ∨(OR),⇁(NOT),⇒(implication),⇔(if and only if);

3. and parentheses.

https://ipipublishing.org/index.php/ipil/ 15

https://ipipublishing.org/index.php/ipil/

P vs NP

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying truth
assignment is a truth assignment that causes ϕ to be evaluated as true. A Boolean formula with a
satisfying truth assignment is satisfiable. The problem SAT asks whether a given Boolean formula is
satisfiable [4].
We define a CNF Boolean formula using the following terms: A literal in a Boolean formula is an
occurrence of a variable or its negation [3]. A Boolean formula is in conjunctive normal form, or CNF,
if it is expressed as an AND of clauses, each of which is the OR of one or more literals [3]. A Boolean
formula is in 2-conjunctive normal form or 2CNF, if each clause has exactly two distinct literals [3].
For example, the Boolean formula:

(x1∨⇁ x1) ∧ (x3 ∨ x2) ∧ (⇁ x1∨⇁ x3)

is in 2CNF. The first of its three clauses is (x1∨ ⇁ x1), which contains the two literals x1 and⇁ x1.
We define the following problem:

Definition 3.1. Monotone Weighted Xor 2-satisfiability problem (MWX2SAT)
INSTANCE: An n-variable 2CNF formula with monotone clauses (meaning the variables are never negated)

using logic operators ⊕ (instead of using the operator ∨) and a positive integer k.
QUESTION: Is there exists a satisfying truth assignment in which at most k of the variables are true?

The following is key Lemma.

Lemma 3.2. MWX2SAT ∈ NP–complete.

Proof. We can build an equivalent MWX2SAT instance for any given instance G = (V,A) of the
K-CLOSURE problem:

1. Variables:

• Create a variable for each vertex v in the original graph G. Denote this variable as v itself.

• For each edge (u, v) in G, introduce two new variables denoted by xuv and xvu.

2. Clauses:

• For each edge (u, v) in G, construct three clauses using the new variables:

– (u⊕xuv): This enforces that either vertex u is true or the new variable xuv is true (XOR).
– (xuv⊕ v): This enforces that either the new variable xuv is true or vertex v is true (XOR).
– (xvu ⊕ xuv): This guarantees that xuv and xvu have different truth values. Note that xvu

is not used elsewhere, so it only enforces there is exactly one true variable per each
edge (u, v) over the new variables xuv and xvu.

Key Points about the Construction:

• The first two clauses for each edge (u, v) ensures that both variables u and v for an edge have
the same truth value. This is because they represent the ”state” of the edge (both in the closure
or both outside). By definition, a k-vertex closure cannot have any outgoing edges pointing
to vertices outside the closure. Therefore, no edge can exist where one vertex belongs to the
solution and the other does not.

• The third clause for each edge (u, v) together ensure that exactly one of xuv or xvu is true in a
satisfying truth assignment. Take into account this condition enforces always a true variable
for each edge for every possible satisfying truth assignment.

Mapping between K-CLOSURE solutions and MWX2SAT assignments:

• A satisfying truth assignment in the MWX2SAT formula corresponds to a valid closure of at
most k vertices in the original graph G if:

– Vertices assigned true represent the vertices in the closure V′.

16 https://ipipublishing.org/index.php/ipil/

https://ipipublishing.org/index.php/ipil/

P vs NP

– New variable xuv assigned true represents that the corresponding edge (u, v) has both
endpoints outside the closure.

– New variable xvu assigned true indicates that the corresponding edge (u, v) has both end-
points within the closure.

Why this construction works:

• The clauses enforce that a satisfying truth assignment must have consistent values for a vertex
and its corresponding edge variables.

• The k-vertex closure property translates to k original variables (vertices) being true in the
satisfying truth assignment, along with exactly one true variable from the pair of new variables
xuv and xvu per each edge depending on the specific closure.

Equivalence and Complexity:

• There exists a satisfying truth assignment for the MWX2SAT formula with at most k + |A| true
variables if and only if there exists a closure of at most k vertices in the original graph. (|A|
represents the number of edges in the graph).

• Since K-CLOSURE is known to be NP-complete, this shows that MWX2SAT is also NP-complete.

In essence, the proof demonstrates that solving MWX2SAT is equivalent to finding a closure of at most
k vertices in the K-CLOSURE problem. This implies that MWX2SAT inherits the NP-completeness
property from K-CLOSURE. □

This is the main theorem.

Theorem 3.3. MWX2SAT ∈ P.

Proof. There is a connection between finding a satisfying truth assignment in MWX2SAT with at most
k true variables and finding a set of at most k vertices that is both a vertex cover and an independent
set in a specific graph construction. Here’s a breakdown of the equivalence:

1. Graph Construction:

• Each vertex in the original graph represents a variable in the MWX2SAT formula.

• Edges are created between variables based on the structure of the 2CNF clauses: If two
variables appear in a clause (e.g., (x⊕y)), then an edge is drawn between the corresponding
vertices in the graph.

2. MWX2SAT and the Graph:

• A truth assignment in MWX2SAT where at most k variables are true directly translates to
a set of at most k vertices in the constructed graph where true variables correspond to the
vertices included in the set.

• The properties of MWX2SAT clauses ensure that:

– Vertex Cover: The chosen vertices cover all the edges (due to the structure of the
clauses and the way edges are formed). This satisfies the vertex cover condition.

– Independent Set: The chosen vertices don’t have any edges connecting them (because
the variables are connected in the graph, and only one variable from each clause can
be true). This satisfies the independent set condition.

Therefore, finding a satisfying truth assignment with at most k true variables in MWX2SAT is indeed
equivalent to finding a set of at most k vertices that fulfills both vertex cover and independent set
requirements in the corresponding graph. However, we know the problem of finding a set of at
most k vertices that is both a vertex cover and an independent set can be easily solved in polynomial
time [4]. Consequently, the instances of the problem MWX2SAT can be solved in polynomial time as
well. □

https://ipipublishing.org/index.php/ipil/ 17

https://ipipublishing.org/index.php/ipil/

P vs NP

4 Discussion

In the definition of the K-CLOSURE problem, which is the original NP-complete, it is important to
notice that is used the words “either ... or ...” which is equivalent to the XOR Boolean operation in
most cases when it is used in English. There are contexts in which is used as OR, but we check out the
whole reference paper [4] and the authors Garey and Johnson always used that statement in the book
as the XOR Boolean operation. Finally, we reduce our principal problem to the Independent Vertex
Cover problem which in the same book states that ”can be easily solved in polynomial time” in the
page 190 [4]. The Independent Vertex Cover problem (where the solution should be simultaneously a
vertex cover and independent set inside of an undirected graph) is the same as solving the 2-colorable
problem in a bipartite graph using at most k vertices in one of the bipartition set. Indeed, it is quite
similar to the 2-colorable algorithm on bipartite graph, but we only need to additionally introduce
a trivial greedy algorithm. We create a software programming implementation in Python for this
algorithm (this code in Python would be outside of the necessary correctness of the paper and thus,
this can only be considered as an appendix that will not compromise the whole result)[5]. This is
placed into a GitHub repository under my GitHub username “frankvegadelgado”[5]. The last commit
was on March 19th of 2024 with a SHA commit bd2d963b34a5b01b7c78dc602aa8f01acd6273f5 [5].

5 Conclusion

A proof of P = NP will have stunning practical consequences, because it possibly leads to efficient
methods for solving some of the important problems in computer science [1]. The consequences,
both positive and negative, arise since various NP-complete problems are fundamental in many
fields [2]. But such changes may pale in significance compared to the revolution an efficient method
for solving NP-complete problems will cause in mathematics itself [1]. Research mathematicians
spend their careers trying to prove theorems, and some proofs have taken decades or even centuries
to be discovered after problems have been stated [1]. A method that guarantees to find proofs for
theorems, should one exist of a “reasonable” size, would essentially end this struggle [1].

Acknowledgements

Many thanks to Sergi Simon, Jorge Félix and Melvin Vopson for their support.

References

[1] Stephen Arthur Cook. The P versus NP Problem, Clay Mathematics Institute. https://www.claymath.org/wp-
content/uploads/2022/06/pvsnp.pdf, June 2022. Accessed 25 May 2024.

[2] Lance Fortnow. The status of the P versus NP problem. Communications of the ACM, 52(9):78–86,2009. doi:10.1145/1562164.1562186.

[3] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd edition,
2009.

[4] Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W.
H. Freeman and Company, 1 edition, 1979.

[5] Frank Vega. ALMA— MWX2SAT Solver. https://github.com/frankvegadelgado/alma, Febru- ary 2024. Accessed 25 May 2024.

18 https://ipipublishing.org/index.php/ipil/

https://ipipublishing.org/index.php/ipil/

	Introduction
	Materials and methods
	Results
	Discussion
	Conclusion

