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Abstract – Entropic information theory, as a unified informational theory, presents a new informational theoretical framework 
capable of fully describing the evaporation of the black holes phenomenon while resolving the information paradox, reconciling 
quantum formalism and relativistic formalism in a single approach. With a set of five new equivalent equations expressing 
entropy, and by introducing the Hawking temperature into one of them, it is possible to solve the black holes information paradox 
by being able to calculate the entropy of entangled Hawking radiation, entangled with the fields inside black holes, allowing us 
to extract information from inside black holes. The proposed model solves the information paradox of black holes by calculating 
a new entropy formula for the entropy of black holes as equal to the entropy of the pure state of entangled Hawking radiation, 
itself equal to the fine-grained entropy or von Neumann entropy, itself according to the work of Casini and Bousso equal to the 
Bekenstein bound which is itself equal, being saturated by Bekenstein-Hawking entropy, at this same entropy. Moreover, since 
the law of the entropy horizon of black holes turns out to be a special case of the Ryu-Takayanagi conjecture, this general formula 
for the fine-grained entropy of quantum systems coupled to gravity, equalizes the entropy of entangled Hawking radiation with 
the gravitational fine-grained entropy of black holes, and makes it possible to relate this resolution of the information paradox 
of black holes based on the concept of mass of the information bit to quantum gravity explaining the emergence of the quantum 
gravity process through the fundamentality of entangled quantum information.  

 

Keywords – Information paradox; Quantum gravity; Mass-energy-information principle; Entropy; Black hole; Black hole 
thermodynamics; Quantum Information. 

 
 

1. Introduction 

After giving a brief introduction to the black hole information paradox and explaining its crucial importance in the 
problem of quantum gravity theory, we review the evaporation of black holes, performing the analysis of Hawking 
radiation by making its presentation and description, leading to a more accurate representation, and to a better 
understanding of the need for a theory of quantum gravity to fully describe this phenomenon. A set of five new 
equivalent formulations expressing the notion of entropy based on the principle of mass-energy-information 
equivalence [1] is presented [2]. The relationship with the thermodynamics of black holes comes from the injection 
of the Hawking temperature [3] into one of these equations which makes it possible to calculate the Bekenstein 
Hawking entropy based on the mass of the information bit, as a new formula for black hole entropy, and to perfectly 
describe black holes system up to the quantum level. Since the Bekenstein Hawking entropy saturates exactly the 
Bekenstein bound, it is equal to it. With the help of Casini [4] and Bousso's work on the Bekenstein bound [5-13] 
which is equal to von Neumann entropy, this fine-grained entropy is itself equal to the entropy of Hawking radiation 
as “In other words, if the black hole degrees of freedom together with the radiation are producing a pure state, then 
the fine-grained entropy of the black hole should be equal to that of the radiation [14]. ” Moreover, the Hawking 
radiation is entangled with the interior of black holes. “In fact, this is precisely what happens with Hawking radiation. 
The radiation is entangled with the fields living in the black hole interior [14].” “The Hawking radiation, are allowing 
us to extract information that resides (from the semiclassical viewpoint) in a distant spacelike-separated region: the 
black hole interior [15].” This approach explains the black hole information paradox by calculating the entropy of 
entangled Hawking radiation as equal to the fine-grained entropy of the black hole itself equal to the Bekenstein 
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Hawking entropy. But the Ryu–Takayanagi conjecture [16,17] as a general formula for the fine-grained entropy of 
quantum systems coupled to gravity [14] as being equivalent to the Bekenstein Hawking entropy, the entropy of 
entangled Hawking radiation is equal to the gravitational fine-grained entropy of black holes.   

2. Information paradox 

The goal of quantum gravity is to provide a coherent framework that unifies quantum mechanics and general relativity, 
allowing us to understand the nature of gravity at the macroscopic and microscopic scales. A crucial question in the 
study of quantum gravity is understanding the process by which information escapes from the interior of the black 
hole. According to classical general relativity, when matter collapses under its own gravity to form a black hole, a 
region called the event horizon forms. The event horizon is essentially the limit beyond which nothing, including 
information, can escape. Any information that falls into the black hole seems to be lost forever to an outside observer. 
On the other hand, quantum mechanics, which is very successful in describing the behavior of elementary particles 
and their interactions, assumes that information is always preserved. In quantum mechanics, the evolution of a 
physical system is described by a unitary principle that preserves information, which means that if you know the state 
of a system at one time, you can in principle determine its state at any other time. This conflict between general 
relativity and quantum mechanics gives rise to the "information paradox" or the "black hole information paradox". It 
essentially wonders what happens to the information contained in matter that falls into a black hole. According to 
quantum mechanics, this information cannot be destroyed, but according to classical general relativity, it is apparently 
lost. According to quantum mechanics, information is always preserved, but classical black holes seem to destroy 
information, leading to a violation of the unitarity principle. That is the paradox. 
 

3. Hawking Radiation  

3.1. Presentation 

A proposed solution to this paradox was discovered in 1974, by physicist Stephen Hawking, proposing that black 
holes are not completely black, but rather emit faint radiation due to quantum effects near the event horizon. This 
radiation is now known as Hawking radiation. The derivation of Hawking radiation by Hawking in 1974 was done 
within the framework of a free quantum field in a fixed classical curved spacetime. Now, this framework used by 
Hawking in 1974 is called semiclassical quantum gravity or quantum field theory in curved spacetime (QFTCS). 
This approach studies the interaction of quantum fields in a fixed classical space-time and predicts, among other 
things, the creation of particles by time-varying space-time. QFTCS provides a theoretical framework for 
understanding the behavior of quantum fields in the presence of gravitational fields, bridging the gap between 
quantum mechanics and general relativity. According to Hawking's theory, black holes can slowly lose mass and 
energy over time through the emission of this radiation. Hawking radiation reduces the mass and energy of the black 
hole and is therefore also known as black hole evaporation. The evaporation of a black hole, which results in Hawking 
radiation [18,19,20] is the phenomenon that an observer looking at a black hole can detect tiny blackbody radiation, 
black hole evaporation, emitted from the area near its event horizon. 

3.2. Description 

Hawking radiation is a form of black body radiation, where the black hole is considered the black body. The 
connection between Hawking radiation and black body radiation lies in the mathematical form of Hawking radiation. 
When studying the quantum effects near the event horizon, Hawking used the principles of quantum field theory and 
treated the event horizon as an effective temperature. The radiation that escapes from the event horizon of a black 
hole has a spectrum that resembles the spectrum of black body radiation at a certain temperature. This means that the 
temperature of the black hole, known as the Hawking temperature, determines the characteristics of the emitted 
radiation, just as the temperature of a black body determines the characteristics of its emitted radiation according to 
Planck's law. In this sense, Hawking radiation can be seen as a form of black body radiation, where the black hole 
event horizon acts as the equivalent of a black body emitting radiation. However, while black body radiation is a 
natural consequence of the thermal properties of a black body, Hawking radiation is a result of quantum mechanical 
effects near the event horizon of a black hole. Additionally, black body radiation is emitted by all parts of a black 
body, while Hawking radiation is specific to the event horizon of a black hole. This Hawking radiation gradually 
causes the black hole to lose mass and energy over time, eventually leading to its evaporation. The energy emitted 
by Hawking radiation ultimately comes from the black hole itself. As a result, the black hole loses energy, and its 
mass decreases over time. This energy loss through Hawking radiation is a fundamental aspect of the phenomenon 
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and leads to the eventual evaporation of black holes over an extremely long timescale. Hawking radiation describes 
the process of particle emission from black holes due to quantum effects near the event horizon, while the holographic 
principle suggests that the information within a black hole can be represented as a hologram on its boundary. 
According to the conjectured gauge-gravity duality (also known as the AdS/CFT correspondence), black holes in 
certain cases (and perhaps in general) are equivalent to solutions of quantum field theory at a non-zero temperature. 
This means that no information loss is expected in black holes (since no such loss exists in the quantum field theory), 
and the radiation emitted by a black hole is probably the usual thermal radiation. The most rigorous realization of the 
holographic principle is the AdS/CFT correspondence by Juan Maldacena. By 2015, Maldacena's article had over 
10,000 citations, becoming the most highly cited article in the field of high energy physics [21]. The temperature of 
the radiation depends on the mass of the black hole, with smaller black holes having higher temperatures. The 
temperature of the black hole is inversely proportional to its mass, meaning smaller black holes have higher 
temperatures and emit more intense radiation. Hawking radiation follows the Boltzmann distribution, which is a 
statistical distribution that describes the behavior of particles in a thermal equilibrium, which means that the emission 
of particles is consistent with the principles of thermodynamics and statistical mechanics. According to Hawking, 
when black holes absorb some photons in a pure state described by a wave function, they re-emit new photons in a 
thermal mixed state described by a density matrix. In fact, if we had a very complex quantum system which starts in 
a pure state, it will appear to thermalize and will emit radiation that is very close to thermal [14]. But Hawking 
radiation is in a pure state, is that this is in apparent contradiction to the fact that Hawking radiation is also said to be 
thermal. How can it be both pure and thermal? An observer located far away from the black hole, at infinity, will see 
the radiation from the black hole as a thermal bath of particles. This is because the observer's reference frame is 
influenced by the curvature of spacetime caused by the black hole. From their perspective, the radiation appears to 
be in a mixed state, following the laws of thermodynamics. On the other hand, an observer located very close to the 
event horizon, in the local region near the black hole, would describe the quantum fields as being in a vacuum state. 
This is because their reference frame is influenced by the strong gravitational field near the black hole. From their 
perspective, there are no particles present, and the fields are in a pure state. The notion of a vacuum state depends on 
the observer's reference frame and the geometry of the spacetime they are in. The apparent contradiction between the 
pure state and thermal nature of Hawking radiation is resolved by recognizing that different observers in different 
regions of spacetime will have different definitions of what constitutes the vacuum state and therefore the whole 
Hilbert space. An observer at infinity sees Hawking radiation as a thermal bath of particles in a mixed state, while an 
observer near the black hole sees the quantum fields in a vacuum state, in a pure state. The different perspectives 
arise due to the different reference frames and the curvature of spacetime near the black hole. The apparent 
contradiction is solved when one realizes that in a general curved spacetime there is no unique definition of the 
vacuum state and therefore the whole Hilbert. Consequently, an observer at infinity will see a thermal bath of particles 
(i.e., in a mixed state) coming from the horizon, even though the quantum fields are in the local vacuum state near 
the horizon. But if the overall system is pure, the entropy of one subsystem can be used to measure its degree of 
entanglement with the other subsystems. “In fact, this is precisely what happens with Hawking radiation. The 
radiation is entangled with the fields living in the black hole interior [14].”  

3.3. Von Neumann Entropy 

In particular, in the early stages, if we computed the von Neumann entropy of the emitted radiation it would be almost 
exactly thermal because the radiation is entangled with the quantum system [14]. 
“In other words, if the black hole degrees of freedom together with the radiation are producing a pure state, then the 
fine-grained entropy of the black hole should be equal to that of the radiation 𝑆஻௟௔௖௞ ு௢௟௘ =  𝑆௥௔ௗ [14]." 
“Where fine grained entropy is the entropy of the density matrix calculated by the standard methods of quantum field 
theory in curved space time. In the literature, this is often simply called the von Neumann entropy”. It is Shannon’s 
entropy with distribution replaced by density matrix. 
 

S = −tr[ρ log(ρ)] (1) 

 
Entanglement entropy is a measure of “quantumness” that vanishes for classical states, and it is large when quantum 
correlations are important. It is also a measure of complexity [22]. 
 
The von Neumann entropy is a measure of the information contained in a quantum system.  
For a pure state, the von Neumann entropy is zero, indicating that the state is perfectly defined and contains no 



 

uncertainty. In contrast, for a mixed state, which is a statistical ensemble of different pure states, the von Neumann 
entropy is non-zero, indicating the presence of uncertainty. 

3.4. Pure states 

A pure quantum state refers to a state of a quantum system that can be described by a single, unique wavefunction. 
A pure state is one where the wavefunction provides a complete description of the system, meaning that there is no 
uncertainty or lack of knowledge about the system's properties. In the context of quantum entanglement, a pure 
quantum state can be maximally entangled. Entanglement is a phenomenon in which the quantum states of two or 
more particles become correlated in such a way that the state of one particle cannot be described independently of 
the others. When two particles are maximally entangled, their quantum states are completely intertwined, and any 
measurement or change in the state of one particle instantaneously affects the state of the other, regardless of the 
distance between them. 

3.5. GHZ states 

A maximally entangled state, also known as a Bell state, is a specific type of entangled state that exhibits the highest 
degree of entanglement possible for a given system. 
Maximally entangled states are often referred to as "maximally entangled quantum states". 
The GHZ state is an example of a pure state in quantum mechanics, specifically in the context of multi-qubit systems. 
GHZ states and Bell states represent different levels of entanglement. GHZ states involve entanglement among three 
or more particles, while Bell states are specific instances of entanglement between two particles.  
GHZ states can be seen as generalizations of Bell states, encompassing the same kind of correlation but extended to 
multiple particles. The GHZ state is characterized by the fact that all the particles are entangled such that their 
outcomes are perfectly correlated. If one particle is measured in the |0⟩ state, the other two particles will also be found 
in the |0⟩ state with certainty, and the same applies to the |1⟩ state. This correlation holds regardless of the spatial 
separation between the particles. The GHZ state are used to demonstrate the non-local correlations between particles. 
 
Nota-Bene: a semi-classical perspective can explain the notion of entanglement; indeed, the entanglement of photons 
can be explained in terms of relativistic properties of space-time as defined by Einstein as well as by quantum 
mechanics. Regarding photons and the theory of special relativity, since all photons move at the speed of light, the 
separation between these two photons would be zero from the point of view of these photons. Entangled photons that 
share one or more degrees of freedom at the quantum level between each photon cannot be described independently 
of the quantum state of the others because they share degrees of freedom. We can therefore say that quantum theory 
is local in the strict sense defined by special relativity and, as such, the term "quantum non-locality" is sometimes 
considered a misnomer [23].  

3.6. Representation 

In apparent contradiction to the fact that Hawking radiation is also said to be thermal, this radiation is in its pure state. 
As the radiation is entangled with the fields living inside the black hole, the black hole radiation can lead to a 
multipartite entanglement of GHZ states. "The Hawking radiation, are allowing us to extract information that resides 
from the semiclassical viewpoint in a distant spacelike-separated region: the black hole interior [15]." Moreover, 
since the combined degrees of freedom of a black hole and the radiation it produces form a pure state, then the fine-
grained entropy of the black hole should be equal to the entropy of the radiation. The relationship between Hawking 
radiation and quantum gravity is close, since Hawking radiation involves both, gravity, due to the presence of black 
holes, and quantum mechanics, due to its quantum origin, it is often considered an indication of the need for a theory 
of quantum gravity to fully describe this phenomenon. It is nevertheless possible to calculate the entropy of entangled 
Hawking radiation based on informational theory, entropic information theory capable of fully describing the 
evaporation of black hole phenomena and solving the information paradox.  
 

4. Entropic Information Approach 

4.1. New formulations of entropy 

In the approach of entropic information, the choice of the terms "entropic information" must be related to the term 
"entropic" used in the perspective of entropic gravity, where entropic gravity is a theory in physics that describes 
gravity as an entropic force, a consequence of a system's tendency to increase its entropy, not as a fundamental 
interaction. As according to the entropic information approach, quantum information is considered an emergent form 
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of the degree of freedom as: "Information is a quantum state change due to the modification of a degree of freedom 
with respect to the quantum system considered." Entropic information approach is based on the mass of information 
bit formula from mass-energy-information equivalence principle from Melvin Vopson, principle testable by a given 
experimental protocol [24], leading to the fundamentality of quantum information considered as physical with a finite 
and quantifiable mass. 
 
We start this entropic information approach by introducing the mass of information into the hidden thermodynamics 
of Louis De Broglie. 
 
About the hidden thermodynamics of isolated particles, it is an attempt to bring together the three furthest principles 
of physics: the principles of Fermat, Maupertuis, and Carnot, that De Broglie has had his final idea. Entropy becomes 
a sort of opposite to action with an equation that relates the only two universal dimensions of the form: 
 

action

h
= −

entropy

k
 (2) 

Where: 
 
𝑘: Boltzmann constant. 
ℎ: Planck constant. 
With 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑛𝑒𝑟𝑔𝑦 ∗  𝑇𝑖𝑚𝑒 
and 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑚𝑐ଶ 
 
 
with mass of information bit: 
 

massୠ୧୲ =
k T ln(2)

cଶ
 (3) 

Where:  
 
𝑘: Boltzmann's constant. 
𝑇: the temperature at which the bit of information is stored. 
𝑐: speed of light. 
 
 
 

action

h
=

mc²t

h
= −

entropy

k
= −

k ln (w)

k
 (4) 

 
 

action

h
=

mc²t

h
=

k T ln(2)

c²
c²t

h
= −

entropy

k
= −

k ln (w)

k
 

(5) 

 
 

action

h
=

mc²t

h
=

k T ln (2)t

h
= −

entropy

k
=  − ln (W) (6) 

 
 

ln(W) = −
kT ln(2)t

h
 (7) 



 

 
 
Moreover, as Entropy: 
 

S = k ln (W) (8) 

 
We obtain a new value for the general entropy S formula based on the hidden thermodynamics of de Broglie with 
the introduction of mass of bit of information: 
 

k ln(W) = −k
k T ln (2)t

h
 (9) 

 
 

𝑆 = −𝑘ଶ
T ln(2)𝑡

ℎ
 

 

(10) 

 
With S 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 expressed in the number of bits of information. The negative sign refers to a state in which the 
disorder or randomness of a system decreases, or the uncertainty or information content decreases, implicating a 
movement towards a more organized, structured, or predictable state. 
 
Where:  
 
𝑘: Boltzmann's constant. 
ℎ: Planck constant. 
𝑇: the temperature at which the bit of information is stored. 
𝑡: time required to change the physical state of the information bit. 
 
 
We obtain the validity proof by the Landauer limit as: 
 

k T ln(2)t

h
=

mc²t

h
 (11) 

 

kT ln(2) = mcଶ (12) 

 
Indeed, the Landauer limit is the minimum possible amount of energy required to erase one bit of information, known 
as the Landauer limit: 
 
As 𝐸 = 𝑚𝑐ଶ 
 

E = kT ln(2) (13) 

 
This limit is the minimum amount of energy possible needed to erase a bit of information, known as the Landauer’s 
limit. Landauer’s principle is fully compatible with the laws of thermodynamics [25,26,27,28]. Landauer's principle 
can be derived from microscopic considerations [29] as well as well-established properties of Shannon–Gibbs–
Boltzmann entropy [25]. Landauer's principle applies to both classical and quantum information. Landauer's principle 
has now been verified experimentally for classical bits and quantum qubits [29,30]. This important physical 
prediction that links information theory and thermodynamics was verified experimentally for the first time in 2012 
[31]. The principle therefore appears fundamental and universal in its application. About these perspectives, the 
information is therefore directly related to the fundamental physics of nature.  
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Some equivalent formulations can be formulated as: 
  
 

4.1.1. Entropy Boltzmann formulation 

Regarding the relation Energy = kT , this new entropy concept can take the form of  
 

S = −kT
k ln(2) t

h
 (14) 

4.1.2. Entropy Einstein formulation 

With Einstein mass energy equivalence, Energy =  m𝑐ଶ, this is:  
 

S = −mcଶ
k ln(2) t

h
 (15) 

4.1.3. Entropy Planck formulation 

with Planck Einstein relation  E = ℎ 𝜈 

this is with h= 
ா

ఔ
 

S = −hν
k ln(2) t

E
ν

 (16) 

S = −k ln(2)tν (17) 

4.1.4. Entropy Avogadro formulation 

With kT = 
ோ்

ேಲ
,  

S = −
RT

N୅

k ln(2) t

h
 (18) 

 

4.1.5. Entropy Fine Structure formulation 

With 𝑁஺ =
ெ௨஺ೝ(௘)௖α²

ଶோ∞௛
 

𝑁஺= Avogadro number 
 

S = −
RT

MuA୰(e)cα²
2R∞h

k ln(2) t

h
 (19) 

S = −
2R∞RTk ln(2) t

MuA୰(e)cα²
 (20) 

As the Boltzmann constant may be used in place of the molar mass constant by working in pure particle count, N, 
rather than the amount of substance, n. 
 
where: 
𝑅∞ : Rydberg constant 
R molar gas constant 
T is the temperature at which the bit of information is stored 
k Boltzmann constant 
t Time required to change the physical state of the information bit 



 

Mu molar mass constant 
Ar(e) relative atomic mass of the electron. 
c speed of light in a vacuum, 
α fine-structure constant, 
 
Based on that view, the entropic information approach is founded on the bit of information such as the number of 
bits of the system, the number of bits necessary to specify the actual microscopic configuration among the total 
number of microstates allowed and thus characterize the macroscopic states of the system under consideration. The 
entropic information theory approach can formulate a set of five equivalent equations expressing entropy, Boltzmann, 
Einstein, Planck, Avogadro and fine structure formulation as seen in Figure 1. 
 

 
 

Figure 1. Set of new five equivalent formulas expressing the entropy based on formula of the mass of the bit of information. 

 
 

4.2. Black Hole Entropy 

The introduction of the Hawking Temperature permits to introduce to the problematic of black holes and to express 
it as being an informational process down to quantum level. Moreover, this new entropy formula provides a deeper 
and structurally different underlying theory that can explain the quantity describe by the entropy of black hole based 
on mass of the information bit. 
We start from this equation obtained by the introduction of mass bits of information into the hidden thermodynamics 
of Louis de Broglie. See (Eq7): 

ln(W) = −
k T ln(2) t

h
 (21) 

wherein we inject the Hawking Temperature represented by this formula: 
 

Tୌ =
1

k

ℏcଷ

8πGM
 (22) 
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ln(W) = −
k

1
k

ℏcଷ

8πGM
ln(2) t

h
 

(23) 

With ℏ =  
௛

ଶగ
 

ln(W) = −
k

1
k

hcଷ

16πଶGM
ln(2) t

h
 

(24) 

we obtain after simplification of k and h: 

ln(W) = −
cଷ ln(2) t

16π²GM
 (25) 

With entropy according to Boltzmann's principle: 

S = k ln(W) (26) 

We obtain the black hole entropy formula from entropic information approach, at the hawking temperature, based on 
the mass of bit of information, 
 

S = k ln(W) = −k
cଷ ln(2) tୣ୴ୟ୮

16πଶGM
 (27) 

 
The ln 2 factor comes from defining the information as the logarithm to the base 2 of the number of quantum states 
[13]. The introduction of the Hawking temperature formula which is expressed by all the constants of modern physics 
combining: relativity, with c, the speed of light, gravitation, with the gravitational constant G, quantum physics with 
the reduced Planck constant and thermodynamics with the Boltzmann constant k, leads to new expressions of black 
hole entropy as seen in Figure 2. Using one of the five new equivalent equations expressing the notion of entropy, 
concerning the thermodynamics of black holes and the entropy of black holes, the equation of the "Boltzmann 
formulation" applied to the thermodynamics of black holes by the injection of the Hawking temperature, can solve 
the paradox of information and can express the gravitational fine-grained entropy of black holes. Let's see how.  
 

 
 

Figure 2. Black hole entropy formula based on mass of the bit of information from entropic information theory. 

 



 

In physics, an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a 
given finite region of space which has a finite amount of energy is the Bekenstein bound (named after Jacob 
Bekenstein)—or conversely, the maximal amount of information required to perfectly describe a given physical 
system down to the quantum level [32]. Furthermore, generally, the entropy is proportional to the number of bits 
necessary to describe the state of the system considered. This result, which was demonstrated by Jacob Bekenstein 
corresponds to the interpretation in terms of bits of information. The universal bound originally founded by Jacob 
Bekenstein in 1981 as the inequality [33, 34]. 
 

S ≤ 
ଶ஠୩ୖ୉

ℏୡ
 (28) 

 
It implies that the information of a physical system, or the information necessary to perfectly describe that system, 
must be finite if the region of space and the energy are finite. 
 
In informational terms, the relation between thermodynamic entropy S and Shannon entropy H is given by: 
 

S = k H ln(2) (29) 

S = k H ln(2) =  
2πkRE

ℏc
 (30) 

S = k
2πRE

ℏcln(2)
ln(2) =

2πkRE

ℏc
 (31) 

 
where H is the Shannon entropy expressed in number of bits contained in the quantum states in the sphere. The ln 2 
factor comes from defining the information as the logarithm to the base 2 of the number of quantum states [13]. 
 
Boltzmann ‘entropy formula can be derived from Shannon entropy formulae when all states are equally probable. 
 

S =  −k∑p୧ ln p୧ = k ∑
ln(W)

W
= k ln (W) (32) 

 

k ln(W) =
2πkRE

ℏc
 (33) 

 

S = k
2πRE

ℏcln(2)
ln(2) =

2πkRE

ℏc
 (34) 

 
The black holes entropic information formula given as follows (see equation 27): 

S = k ln(W) = −
kc³ln (2)tୣ୴ୟ୮

16π²GM
 (35) 

As S, Boltzmann entropy can be derived from Shannon entropy H and following the relation between thermodynamic 
entropy and Shannon entropy.S = k H ln(2); we obtain:   
 

S = k ln(W) = −k
cଷ ln(2) tୣ୴ୟ୮

16πଶGM
= k

2πRE

ℏc
= k H ln(2) (36) 
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−
c³tୣ୴ୟ୮

16π²GM
=

2πRE

ℏc ln (2)
 (37) 

 
where S is the entropy, k is Boltzmann's constant, R is the radius of a sphere that can enclose the given system, E 
(mcଶ) is the total mass–energy including any rest masses, ħ is the reduced Planck constant, and c is the speed of light.  
 

With 
ୡమ

ଶ ୋ୑
=

ଵ

ୖ
 

−
ctୣ୴ୟ୮ 

8π²R
=

2πcRM

ℏ ln (2)
 (38) 

Simplification by c, 
 

tୣ୴ୟ୮

8π²R
=  −

2πRM

ℏ ln (2)
 (39) 

We obtain, 

tୣ୴ୟ୮ = −
16πଷR²M

ℏ ln(2)
 (40) 

With 
ଶீெ

ୡమ =  R 

tୣ୴ୟ୮ = −
32πଷGRMଶ

ℏ ln(2) cଶ
 (41) 

With 
ଶீ

ୡమ =  R 

tୣ୴ୟ୮ = −
64πଷGଶMଷ

ℏcସ ln(2)
 (42) 

 

With A, the area of the black hole horizon: 16 𝜋(
ீெ

௖మ )ଶ 

 

tୣ୴ୟ୮ = −
4πଶM

ℏ ln(2)
A (43) 

 

To inject in 𝑘 ௖య ௟௡(ଶ)௧೐ೡೌ೛

ଵ଺గమீெ
, 

 

S = −k
cଷ ln(2) 4πଶM

16πଶGM ℏ ln(2)
A (44) 

As a side note, it can also be shown that the Boltzmann entropy is an upper bound to the entropy that a system can 
have for a fixed number of microstates meaning: 

S ≤  k ln(W) (45) 

 
With W reflecting the degree of freedom of a system. 
 
We must take in account that the Bekenstein–Hawking boundary entropy of three-dimensional black holes exactly 
saturates the bound. 
 

S = k ln(W) (46) 



 

= −k
ୡయ ୪୬(ଶ) ସ𝛑మ୑

ଵ଺஠మୋ୑ ℏ ୪୬(ଶ)
A 

=  
4kπGMଶ

ℏc
 

=
k

4
ቆ

cଷ

ℏG
ቇ A = k

A

4l୮
ଶ 

= k
2πRE

ℏc
 

= k H ln(2) 

 
 

The interpretation of negative time in the context of Hawking radiation is related to the mathematical description of 
the quantum fields near the event horizon of a black hole. Indeed, quantum field theory is a framework used to 
describe the behavior of subatomic particles and their interactions. In this theory, complex numbers and Fourier 
analysis are used to analyze the behavior of quantum fields near the event horizon. In this analysis, negative frequency 
solutions correspond to positive energy particles propagating forward in time outside the black hole and negative 
energy particles propagating backward in time inside the black hole. This means that, mathematically, negative time 
is used to describe the behavior of particles inside the black hole, while positive time is used to describe the behavior 
of particles outside the black hole. 
 
It's important to note that negative time is not a physical quantity, but rather a mathematical result derived from 
certain calculations. 

4.3. Casini’s works 

Casini proves the thermodynamics interpretation in the form of Bekenstein bound as valid. Indeed, we know 
following the work of Casini in 2008 [4] about the von Neumann entropy and the Bekenstein bound, that the proof 
of the Bekenstein bound is valid using quantum field theory [5-13]. 
 
For example, given a spatial region V, Casini defines the entropy on the left-hand side of the Bekenstein bound as: 
 

Sv = S(ρ୚) − S൫ρ୚
଴ ൯ = −tr(ρ୚ log ρ୚) + tr(ρ୚

଴ log ρ୚
଴ ) (47) 

𝑆௏ where S (ρ௏) is the von Neumann entropy of the reduced density matrix ρ௏ associated with V, V in the excited 
state ρ, and S (ρ௏

଴ ) is the corresponding von Neumann entropy for the vacuum state ρ଴. 
 
Casini defines the right-hand side of the Bekenstein bound as the difference between the expectation value of the 
modular Hamiltonian in the excited state and the vacuum state, 

K୚ = tr(K ρ୚) − tr(Kρ୚
଴ ) (48) 

With these definitions, the bound reads SV ≤ KV, which can be rearranged to give: 
 

tr(ρ୚ log ρ୚) −tr(ρ୚ log ρ୚
଴  ) ≥ 0 (49) 

This is simply the statement of positivity of quantum relative entropy, which proves the Bekenstein bound. 
 
Diving into Casini’s work with the black hole’s entropic information formula, we obtain new enlightening about 
black hole fine-grained entropy.  
 
The ingenious proposal of Casini [4] is to replace 2 π R E, by: 
 

K୚ = tr(K ρ୚)−tr(K ρ୚
଴ ) (50) 

Indeed, in Casini’s work, on the right-hand side of the Bekenstein bound, a difficult point is to give a rigorous 
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interpretation of the quantity 2 π R E, where R is a characteristic length scale of the system and E is a characteristic 
energy. This product has the same units as the generator of a Lorentz boost, and the natural analog of a boost in this 
situation is the modular Hamiltonian of the vacuum state K = −log ρ௏

଴ . 
 
With these definitions, the bound reads 

Sv ≤ K୚ (51) 

 
The version of the Bekenstein bound is Sv ≤ 𝐾௏, namely: 
 

S(ρ୚) − S(ρ୚
଴ )  ≤  tr(K  ρ୚) − tr(K ρ୚

଴ ) (52) 

is equivalent to:  
 

Sv ≡ S(ρ୚ | ρ୚
଴ )  ≡  tr(ρ୚ (log ρ୚ − log ρ୚

଴ )) ≥ 0 (53) 

 
As black holes entropic information formula is equal to Bekenstein universal bound.  
 
 
 

−
kc³ln(2)tୣ୴ୟ୮

16π²GM
=

2πkRE

ℏc
 (54) 

 
As the difference between the expectation value of the modular Hamiltonian in the excited state and the vacuum state 
𝐾௏ = 𝑡𝑟(𝐾 ρ௏)−tr(K ρ௏

଴ ) is equal to Bekenstein universal bound.  
We obtain: 
 

Sv ≡ S(ρ୚ | ρ୚
଴ ) =  S(ρ୚) − S൫ρ୚

଴ ൯ 

= −tr(ρ୚ log ρ୚) + tr(ρ୚
଴ log ρ୚

଴ ) 

= tr(ρ୚ (log ρ୚ − log ρ୚
଴ )) 

= K୚ = tr(K ρ୚)−tr(K ρ୚
଴ ) 

=
2πkRE

ℏc
 

= −
kc³ln (2)tୣ୴ୟ୮

16π²GM
 

(55) 

  

4.4. Global formulation 

Starting from the hidden thermodynamics of Louis de Broglie, where we inject the mass of information bit of 
Vopson's mass-energy-information equivalence principle, proposing that a bit of information is not only physical, as 
already demonstrated, but that it has a finite and quantifiable mass, leading to the expression of a new formulation of 
entropy based on the degrees of freedom, on the number of bits of the system. Several formulations of this entropy 
formula based on different relationships, based on Einstein's mass-energy equivalence or on the Einstein-Planck 
relation, or based on the Avogadro number, or on the fine structure relation have been formulated, leading to a set of 
five new equivalent entropy formulas. After that, we inject the Hawking temperature, into one of these formulas 
leading to a new formulation of the Bekenstein-Hawking entropy formula where a new formulation based on an 
evaporation time of black holes and the degrees of freedom of black holes seen as an entire quantum system was 
calculated. The entropic black holes information formula can calculate the entropy of the entangled Hawking 
radiation up to the quantum system, describing black holes.  



 

 
The entropic information formula of black holes saturates exactly the universal bound, the entropic information 
formula of black holes is equal to the universal bound originally found by Jacob Bekenstein [34] which is equal by 
Casini's work [4] to the difference between the expectation value of the modular Hamiltonian in the excited state and 
in the vacuum state. Naive definitions of entropy and energy density in quantum field theory suffer from ultraviolet 
divergences.  
 
In the case of the Bekenstein bound, ultraviolet divergences can be avoided by taking the differences between the 
quantities calculated in the excited state and the same quantities calculated in the vacuum state [35]. The entropic 
information formula for black holes can calculate Bekenstein–Hawking entropy; as the entropy of the black hole 
saturates exactly the Bekenstein bound so that it is equal to the Bekenstein bound which is itself according to Casini's 
work equal to the von Neumann entropy, itself equal to that of the Hawking radiation, which with the degrees of 
freedom of black holes produces a pure state, while Hawking radiation being entangled with fields inside black holes, 
allowing us to extract information that resides from the semi-classical point of view, inside the black hole; at the end 
of evaporation, the complete von Neumann entropy is again equal to 0, so no information is lost!  
 
Finally, we obtain: 
 
 

Sv ≡ S(ρ୚ | ρ୚
଴ ) =  S(ρ୚) − S൫ρ୚

଴ ൯ 

 

= −tr(ρ୚ log ρ୚) + tr(ρ୚
଴ log ρ୚

଴ ) 

 

= tr(ρ୚ (log ρ୚ − log ρ୚
଴ )) 

 

= K୚ = tr(K ρ୚)−tr(K ρ୚
଴ ) 

 

=
2𝜋𝑘𝑅𝐸

ℏ𝑐
 

 

=
k

4
ቆ

cଷ

ℏG
ቇ A =  

4kπGMଶ

ℏc
= k 

A

4l୮
ଶ 

 

= −
௞௖³୪୬(ଶ)௧೐ೡೌ೛

ଵ଺గ²ீெ
 = - 𝑘

௖య ௟௡(ଶ) ସ𝝅మெ

ଵ଺గమீெ ℏ ௟௡(ଶ)
𝐴 

 

= k ln(W) 

 

= 𝑘 𝐻 ln(2) 

 

(56) 

 
 
 

with 𝑡௘௩௔௣ = −
ସగమெ

ℏ ௟௡(ଶ)
A 

with A, the area of the black hole horizon: 16 𝜋(
ீெ

௖మ )ଶ 
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with 𝑙௣: Planck length, ට
ℏீ

௖య  

 
The Page curve is typically applying to an evaporating black hole system, describing the von Neumann entropy of 
the evaporated Hawking radiation as a function of time. According to Anna Karlsson in the “Replica wormhole and 
island incompatibility with monogamy of entanglement” article [36], "the replica wormhole derivation and the island 
conjecture rely on density matrix theory e.g. for the expression for the radiation entropy. Since entanglement is 
monogamous in density matrix theory, it is problematic to employ that theory in the presence of non-monogamous 
entanglement. Effectively, the two methods introduce new physics (non-monogamy, contrary to the present claim) 
and the treatment risks being inconsistent". The formula about black holes entropic information is a new formulation 
of Bekenstein-Hawking entropy, new formulation based on information; it is equal to Bekenstein bound, as 
Bekenstein-Hawking entropy saturates exactly the Bekenstein bound and equal to von Neumann entropy which is 
the fine-grained entropy, as in Casini’s work, the von Neumann entropy calculates the Bekenstein bound, moreover 
the black holes entropy horizon law turns out to be a special case of the Ryu–Takayanagi conjecture. See  
Figure 3. We must take note that the first version of the fine-grained entropy formula discovered by Ryu and 
Takayanagi is a general formula for the fine-grained entropy of quantum systems coupled to gravity [14]. At this 
level we can relate the entropic information of black holes with the Ryu-Takayanagi formula which is a general 
formula for the fine-grained entropy of quantum systems coupled to gravity. As the black holes entropy horizon law 
which turns out to be a special case of the Ryu–Takayanagi conjecture, we can put emphasis on the process of 
emergence of quantum gravity through the fundamentality of entangled quantum information. 
 

 
 

Figure 3.  Global equations of the resolution of black holes information paradox by entropic information theory 

 

5. Ryu–Takayanagi conjecture 

The Ryu-Takayanagi conjecture is a fundamental result in the field of quantum gravity and holography. It establishes 
a connection between the entanglement entropy in a quantum field theory and the geometry of its dual gravitational 
theory in one higher dimension. The conjecture was proposed by Shinsei Ryu and Tadashi Takayanagi in 2006 and 
has since been supported by a large body of evidence. 
The Ryu–Takayanagi formula calculates the entropy of quantum entanglement in conformal field theories on 



 

Bekenstein-Hawking entropy of black holes in the context of Juan Martín Maldacena's holographic principle, in 
which conformal field theories on a surface form a gravitational theory in a closed volume. The first version of the 
fine-grained entropy formula was discovered by Ryu and Takayanagi [37]. It was subsequently refined and 
generalized by several authors [38-45]. Originally, the Ryu-Takayanagi formula was proposed to calculate 
holographic entanglement entropy in anti-de Sitter spacetime, but the present understanding of the formula is much 
more general. It requires neither holography, nor entanglement, nor anti-de Sitter spacetime. Rather it is a general 
formula for the fine-grained entropy of quantum systems coupled to gravity [14]. The black-hole entropy is 
proportional to the area of its event horizon. The black holes entropy horizon law turns out to be a special case of the 
Ryu–Takayanagi conjecture. The black-holes entropy area relationship was generalized to arbitrary regions via the 
Ryu–Takayanagi formula, which relates the entanglement entropy of a boundary conformal field theory to a specific 
surface in its dual gravitational theory [46], but the current understanding of the formula is much more general. As 
being a general formula for the fine-grained entropy of quantum systems coupled to gravity [14]. 
Casini's work on von Neumann entropy and the Bekenstein bound, gives the proof that the Bekenstein bound is valid 
using quantum field theory. Bekenstein Hawking entropy saturates exactly the Bekenstein bound, which is equal to 
von Neuman entropy, according to the works of Casini and Bousso.  
 
Bekenstein Hawking entropy = Bekenstein bound= von Neumann entropy 
 
“In fact, this is precisely what happens with Hawking radiation. The radiation is entangled with the fields living in 
the black hole interior [14].” 
“In other words, if the black hole degrees of freedom together with the radiation are producing a pure state, then the 
fine-grained entropy of the black hole should be equal to that of the radiation 𝑆஻௟௔௖௞ ு௢௟௘ =  𝑆௥௔ௗ [14]."  
 
Bekenstein Hawking entropy = Bekenstein bound= von Neumann entropy = entropy of entangled Hawking radiation. 
With Ryu-Takayanagi formula (black holes entropy horizon law being a special case): 
 

entropic information formula for black holes entropy 
=Bekenstein Hawking entropy 

= Bekenstein bound 
= von Neumann entropy 

= entropy of entangled Hawking radiation 
= fine-grained entropy of quantum systems coupled to gravity 

=gravitational fine-grained entropy of black holes 
 
In the context of quantum systems coupled to gravity, the fine-grained entropy refers to the measure of the 
information content or uncertainty associated with the quantum state of the system when gravity is considered. 

6. Conclusion  

After presenting, describing, and representing the concept of black holes evaporation, we show that we can calculate 
the entropy of the entangled Hawking radiation of black holes, based on a new informational approach built on the 
mass of the information bit as a finite and quantifiable mass. With the help of one of the five new equivalent equations 
of entropy formulated by the entropic information approach and by introducing the Hawking temperature into one of 
these equations, we can express the entropy of black holes and express it as an informational process up to the 
quantum level. This new informational entropy of the black hole calculates the Bekenstein Hawking entropy that 
saturates the Bekenstein bound, which according to Casini and Bousso is equal to the von Neumann entropy, and 
since the combined degrees of freedom of a black hole and the radiation it produces form a pure state, then the fine-
grained entropy of the black hole should be equal to the entropy of the radiation. This radiation is entangled with the 
fields inside black holes (GHZ states), which allows us to extract information that resides from the semi-classical 
point of view, inside black holes. In addition, the Ryu–Takayanagi conjecture as a general formula for the fine-
grained entropy of gravity-coupled quantum systems, which is equal to the Bekenstein Hawking entropy, makes it 
possible to calculate the entropy of the entangled Hawking radiation as the gravitational fine-grained entropy of black 
holes. Entropic information theory can describe in an informational way the phenomena of black holes evaporation 
and solve the information paradox while calculating the entropy of the entangled Hawking radiation as the 
gravitational fine-grained entropy of black holes.  
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