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Abstract - A distance function between two random variables or vectors was proposed in 2003 in a Ph.D. dissertation
[1, 2]. Initially called a probability metric, it is now known as ”Łukaszyk-Karmowski metric” or LK-metric and has been
successfully applied in various fields of science and technology. It does not satisfy the identity of indiscernibles (Leibniz’s
law) axiom of the metric, the ontological axiom also invalidated by the ugly duckling theorem. This note addresses two
false claims made in a preprint [3] that LK-metric is the same as the mean absolute difference and that it is ill-defined. The
fallacy of the first claim is straightforward: the mean absolute difference is defined solely for independent and identically
distributed random variables, contrary to LK-metric. Thus, if one considers E|X − X|, then the random variable X must
be independent of itself, which implies its degenerate probability distribution and E|X − X| = 0. If X has a degenerate
probability distribution, then Y , which is identically distributed as X, also has a degenerate probability distribution and
E|X − X| = 0 = E|X − Y |, invalidating the second claim.
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The following two false claims concerning a distance function of two random variables or vectors, known as
”Łukaszyk-Karmowski metric” or LK-metric [1, 2] were raised in a preprint [3] published solely on arXiv:

1. LK-metric is actually the functional
ψ̃([X]d, [Y]d) = E|X − Y |, (1)

where E|X − Y | is the mean absolute difference between random variables X and Y , which renders this
functional ill-defined, and consequently that

2. when the author of LK-metric ”asserts that the identity of indiscernibles property is not realized by the
metric E| · − · | he uses that we end up understanding he implicitly identifies the identically distributed
random variables of L1(R). In other words, he reasons as if (1) were well-defined.”

These claims are based on the following two false arguments.

Argument 1. The ”so-called Lukaszyk-Karmowski metric used in mechanical physics or in quantum physics”
is the expression ”of the statistical distance E|X−Y | between two random variables X and Y”, the mean absolute
difference between X and Y , also known as the absolute mean difference and the Gini mean difference.

Reply 1. This is not true. LK-metric D∗⋆(X,Y) between two random variables or vectors X and Y , where ”∗⋆”
in the subscript stands for the types of probability distributions (normal, uniform, binomial, Laplace [4], etc.)
of X and Y , is not the same as the mean absolute difference:

D∗⋆(X,Y) , E|X − Y |. (2)

E|X−Y | is defined for independent and identically distributed (i.i.d.) random variables. Recall that two random
variables X and Y assuming values in I ⊆ R having the cumulative distribution functions (cdf) FX(x) = Pr(X ≤
x) and FY (y) = Pr(Y ≤ y) and joint cdf FX,Y (x, y) = Pr(X ≤ x ∧ Y ≤ y) are identically distributed iff

FX(x) = FY (x) ∀x ∈ I, (3)
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and independent iff
FX,Y (x, y) = FX(x) · FY (y) ∀x, y ∈ I, (4)

which implies that they have the same type of probability distribution, and their means (µ) and standard devia-
tions (σ) are the same (µx = µy and σx = σy).
On the other hand, random variables or random vectors X and Y , being the arguments of LK-metric can have
different types of probability distributions, different means, and/or different standard deviations (violating the
definition (3)) and can be dependent (violating the definition (4)).
In most practical applications of LK-metric (see e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56]), usually X and Y were considered independent, had the same type of probability
distributions, and the same standard deviations. However, their means were considered different (µx , µy). It
was shown, for example, that in modeling of intratumor heterogeneity the consequences of random switching
between (stable) coexisting point attractors of different relative depth can be readily quantified using LK-metric
which specifies geometric distance of the points with coordinates µx and µy known up to the respective proba-
bility distributions [18]. This approach is physically based, allowing the real uncertainty in the location of the
sample point around its location to be considered [6, 7].
Furthermore, if one considers E|X − X|, then by the definition (4) the random variable X must be independent
of itself and the only way a random variable X can be independent of itself is if for every measurable set A
either its probability Pr(X ∈ A) = 1 or Pr(X ∈ A) = 0 [57]. In other, words, the definition (4) requires the
indempotence of Pr(X ∈ A)

Pr(X ∈ A) · Pr(X ∈ A) = Pr(X ∈ A)⇔ Pr(X ∈ A) ∈ {0, 1}, (5)

which in turn implies that the random variable X has a one-point distribution in the discrete case or a Dirac
delta distribution in the continuous case. In both cases, X describes almost surely (a.s.) equal event. In other
words, X has a degenerate distribution and E|X − X| = 0.
In the case X has a degenerate distribution δ, LK-metric vanishes for µx = µy, the same as E|X − X|

E|X − X| = Dδδ(X, X)µx=µy = 0. (6)

However, for any other non-degenerate probability distribution ∗ of X

D∗∗(X, X)µx=µy > 0, (7)

and is well-defined, since in this case X is not self-independent, and thus degenerate random variable, which is
implied by the definition (4) leading to the property (5), but represents the same physical phenomenon, which
is independently observed [58] by two distinct observers (X, X). A rainbow is a perfect illustration of observer
dependence [59].
This characteristic non-zero distance effect built in LK-metric allows to avoid ill-conditioning problems in radial
basis function interpolation [60, 29] and inverse distance weighting [61, 31, 36, 48], where the interpolation
accuracy can be improved by choosing the type of distance metric [27, 48]. Incorporating random mechanics
into prediction [62] leads to a smooth interpolation function [19]. These spatial interpolation methods do not
require statistical assumptions [63].
By preventing zero distances based on parameter uncertainty [4], LK-metric can, furthermore, be used in anal-
ysis of nondeterministic dynamical systems with competing attractors [53]. Since LK-metric represents the
mean of distances between all the outcomes of the two uncertain objects, it can also be used in uncertain near-
est neighbor classification [64, 65]. The actual value of an uncertain object is modeled by a probability density
function [66].
By the property (7), LK-metric does not satisfy the identity of indiscernibles (Leibniz’s law) axiom of the metric
[9, 11, 67, 68] stating that there cannot be separate objects that have all their properties in common (no two
distinct objects are equally similar): ”X and X” in (7) have all their properties (type of the distribution, µx, and
σx) in common, but can also be independently observed [58]. LK-metric is not the only distance function that
does not satisfy the identity of indiscernibles axiom. The partial metric [69] axioms, for example, also allow
that each object not necessarily have to have zero distance from itself. However, the partial metric satisfies two
additional axioms of small self-distances and modified triangle inequality, which are not satisfied by LK-metric
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[70]. Further theoretical considerations concerning LK-metric can be found in a considerable literature in this
field (see e.g. [71, 72, 73, 74, 33, 75, 76, 68, 77, 67, 78, 70, 79]).
Remarkably, the identity of indiscernibles ontological axiom, introduced to philosophy by Gottfried Wilhelm
Leibniz around 1686, was invalidated by the ugly duckling theorem stated in 1969 [80, 81] and asserting that
every two objects one perceives are equally similar (or equally dissimilar).

Argument 2. Some ”authors using E|X−Y | have fallen into the trap of identifying withinL1(R) the identically
distributed random variables rather than the almost surely equal random variables. Unfortunately, this leads to a
logical impasse. Seeking a contradiction, suppose that we set (1), where X,Y ∈ L1(R) are identically distributed
without being almost surely equal. We have [X]d = [Y]d and E|X − Y | > 0 (since E|X − Y | = 0⇔ X a.s.

= Y), and
we end up with the following contradiction:

ψ̃([X]d, [X]d)
(1)
= E|X − X| = 0 <

< E|X − Y |
(1)
= ψ̃([X]d, [Y]d) = ψ̃([X]d, [X]d),

(8)

meaning that (1) is ill-defined”.

Reply 2. This is not true. Let us extract the main argument of the inequality (8)

E|X − X| = 0
?
< E|X − Y |. (9)

Indeed E|X − X| = 0, as we have shown in Reply 1, since here X must be self-independent random variable,
which is implied by the definition (4). But since X and Y are i.i.d. they also need to satisfy both definitions
(3) and (4). Then, if X is self-independent random variable with degenerate distribution, then also Y is and
therefore X a.s.

= Y . Thus, also E|X − Y | = 0. Therefore, the inequality (8) turns into the equality

ψ̃([X]d, [X]d)
(1)
= E|X − X| = 0 =

= E|X − Y |
(1)
= ψ̃([X]d, [Y]d) = ψ̃([X]d, [X]d),

(10)

and the contradiction or logical impasse that it allegedly brought collapses.

Now assume, as does the author of [3], that X and Y are i.i.d. and X
a.s.
, Y . Then the last equality in (8) is false,

ψ̃([X]d, [Y]d) , ψ̃([X]d, [X]d). If in the relation (8)

1. ψ̃([X]d, [X]d)
(1)
= E|X − X| = 0 (LHS of (8)), and

2. ψ̃([X]d, [Y]d)
(1)
= E|X−Y | > 0 (RHS of (8)), since, as we have shown above and as the author of [3] correctly

assumes, E|X − Y | = 0⇔ X a.s.
= Y , then consequently

3. ψ̃([X]d, [Y]d) > ψ̃([X]d, [X]d).

Therefore, even under the false assumption of X and Y being i.i.d. and not a.s. equal, which is required to form
the inequality (8), the contradiction that this inequality allegedly introduces also collapses.
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[26] G. Lenda, M. Ligas, P. Lewińska, and A. Szafarczyk, “The use of surface interpolation methods for
landslides monitoring,” KSCE Journal of Civil Engineering, vol. 20, pp. 188–196, Jan. 2016.

[27] You, Hojun and Kim, Dongsu, “Development of an anisotropic spatial interpolation method for velocity
in meandering river channel,” Journal of Korea Water Resources Association, vol. 50, pp. 455–465, July
2017.

[28] J. Koloda, J. Seiler, and A. Kaup, “Frequency-Selective Mesh-to-Grid Resampling for Image Communi-
cation,” IEEE Transactions on Multimedia, vol. 19, pp. 1689–1701, Aug. 2017.

[29] A. M. Abd and S. M. Abd, “Modelling the strength of lightweight foamed concrete using support vector
machine (SVM),” Case Studies in Construction Materials, vol. 6, pp. 8–15, June 2017.
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