ISSN 2976 - 730X

IPI Letters 2026,Vol 4 (1):9-12

https://doi.org/10.59973/ipil.315

e e r s Received: 2026-01-02
Accepted: 2026-01-15

Published: 2026-01-20

Article

Computational Complexity of Determining the
Assembly Index

Piotr Masierak

1 Lukaszyk Patent Attorneys, ul. Glowackiego 8, 40-052 Katowice, Poland

* Corresponding author: | pmasierak@patent.pl

Abstract - The assembly index of assembly theory quantifies the minimal number of composition steps required
to construct an object from elementary components. The study proves that the decision version of the assembly
index problem is NP-complete, through an explicit correspondence between assembly plans and straight-line
grammars. This correspondence implies that the optimization version of the assembly index problem inherits
NP- and APX-hardness from the classical smallest grammar problem. The study provides complete, self-
contained proofs for both decision and optimization variants of the assembly index problem. These results
establish that computing or approximating the assembly index is computationally intractable, placing it within
the same complexity class as grammar-based compression.

Keywords Assembly theory; Assembly index; Grammar-based-compression; Computational complexity; In-
formation theory; Complexity measures; NP-completeness.

1 Introduction

Assembly theory (AT) [1-3] studies how complex structures emerge from simpler com-
ponents via reuse of intermediates. The assembly index (ASI) quantifies this generative
complexity as the minimal number of joining steps required to construct a structure from
elementary and intermediate components. Intuitively, the ASI captures how deeply an ob-
ject is embedded in a hierarchy of possible assembly pathways. Although this concept has
been widely discussed in theoretical and experimental contexts, its precise computational
characterization has remained open. It was conjectured [4] that the problem of determining
the assembly index i NP-complete. An attempt to prove this conjecture was offered in [5].
However, this proof was shown to violate the principles of AT by a predefined assembly
space involving only a set of predefined assembly steps [6]. In this work, we consider the
general, string-based formulation of the ASI with binary concatenation and assembly spaces
over strings with free terminals and unlimited reuse.

2 Methods

The smallest grammar problem (SGP) was shown to be NP-complete [7], with additional
results on APX-hardness and bounds on approximation ratios. Furthermore, connections

'Formally, a problem is not a complexity class, but belongs to a complexity class.

https://doi.org/10.59973/ipil.315
mailto:pmasierak@patent.pl

Computational Complexity of Determining the Assembly Index

between SLPs and Lempel-Ziv factorization were analyzed [8] and the hardness results were
extended to fixed alphabets and Chomsky normal form grammars [9].

We shall show that determining the ASIis computationally equivalent to finding the shortest
straight-line program (SLP) generating w, a concept well known in grammar-based compres-
sion. This equivalence allows us to transfer established hardness results from the smallest
grammar problem (SGP) to the ASI, connecting these previously separate research areas.
We shall prove that the decision version of the ASI problem (ASI-DEC) is NP-complete and
that its optimization version (ASI-OPT) is NP- and APX-hard. These findings place the
ASI within the same theoretical framework as grammar-based compression, showing that
computing or approximating ASI(w) is computationally intractable unless P = NP.

3 Results

Let X be a finite alphabet and w € X* a word. The initial pool contains all letters of L,
the assembly step involves the concatenation (o) of exactly two existing words (letters or
words previously formed), and each previously formed word may be reused arbitrarily
many times. The goal is to construct the word w, and the cost of achieving the goal is the
number of assembly steps. The ASI(w) is the minimal number of assembly steps required to
construct the word w.

Definition 1 (ASI-DEC). Given a pair (w, k) with w € £* and k € IN, decide whether ASI(w) < k.

The problem is existential: the input does not include the assembly plan but only asks
whether such a plan exists. The NP witness corresponds to such a plan, and the verifier
checks it in polynomial time by reconstructing the concatenation sequence. The distinction
between the assembly steps problem and the assembly index problem is that the former
concerns verifying a specific assembly sequence within a bounded number of steps, while
the latter, formalized in Definition [1} is existential, asking only whether such a sequence
exists. Accordingly, its NP witness is the assembly plan itself.

A straight-line program (SLP) is a context-free grammar generating exactly one word w, with
rules of the form X — YZ or X — a. Its size is the number of concatenation rules X — YZ.

Definition 2 (SLP-DEC). Given a pair (w, K), decide whether there exists an SLP of size less than
or equal to K generating w. This problem is NP-complete [7-9].

Lemma 1. For any word w, the minimal number of assembly steps equals the minimal number of
concatenation rules in an SLP generating w, that is ASI(w) = SLP(w).

Proof. Each assembly plan of k concatenations corresponds to an SLP of size k, where every
step U o V becomes a production X — UV. Conversely, every SLP of size K yields a K-step
assembly plan by expanding its rules in topological order. Both count the same number of
concatenations. m]

For example, let w = 01010 over binary alphabet X = {0,1} (the initial pool). An optimal
assembly plan containing three steps S; may have the form

Sl =001=01;

S;:=5,00=0100=010;

S3:=5,085,=010001 = 01010 = w.
corresponding to the SLP of size K = 3

R; - 001 (Rule1 corresponds to step S;);
R, — Ri0 (Rule 2 corresponds to step S,);
R3 = RyR; (Rule 3 corresponds to step Ss).

10 https://ipipublishing.org/index.php/ipil/

https://ipipublishing.org/index.php/ipil/

Computational Complexity of Determining the Assembly Index

Lemma 2. ASI-DEC € NP.

Proof. Let the input be (w, k), where w € X* has length n := |w| and k € N is encoded in
binary. We shall show that there exists a polynomial-time verifier whose running time is
polynomial in the input size n + log, k.

Any construction of a word of length n from single letters using binary concatenations needs
at most n — 1 concatenation steps: starting from pieces of total length 1, each concatenation
increases the length of the newly created word by at least 1, and the final length is n. Hence,
if k > n — 1 then the instance is trivially YES. Otherwise, k < n — 2, so any feasible witness
plan uses at most t < k = O(n) steps.

A witness is an assembly plan given as a sequence of t steps X; .= U;o V;fori=1,2,...,t,
where t < k. Each Uj;, V; is specified by pointers/indices either to: (i) a terminal symbol a € &
(constant-size encoding), or (ii) one of the previously constructed words X; with j < i. Thus,
the witness size is O(tlog, t) = O(nlog, n) bits.

The verifier reconstructs all intermediate strings X; in increasing order of i and checks that
the last constructed string equals w. Each intermediate string has length at most 1, hence the
total verification time is O(t - n) € O(n?) because t < k < n — 1 in the nontrivial cases, which
is polynomial in n and hence also polynomial in the input size n + log, k. O

Theorem 1. ASI-DEC € NP-comPLETE for any finite alphabet ¥.

Proof. From Lemma 2 we know that ASI-DEC € NP. For NP-hardness, we reduce SLP-DEC
to ASI-DEC: by Lemmal |1}, for every instance (w, K), we define (w, k := K), which leads to

(w,K) € SLP-DEC <= SLP(w) < K < ASI(w) < K < (w,k) € ASI-DEC.
The reduction is identity-based and computable in O(|w]|) time, proving the NP-hardness. O

The reduction is purely existential and does not require an explicit plan or grammar. It shows
that the existence of a grammar of size lower than or equal K is equivalent to the existence
of an assembly plan of cost lower than or equal K. Therefore, determining ASI(w) lies in the
same computational class as finding the smallest SLP.

Theorem(I|shows that determining whether a word can be assembled within k concatenations
is, therefore, in general, computationally intractable unless P = NP.

For a given word w, we define the ASI optimization version:
Definition 3 (ASI-OPT). Given w € L*, minimize the number of its assembly steps to reach ASI(w).
Let SLP(w) denote the minimal number of concatenation rules in an SLP generating w.

Theorem 2. The optimization version of the ASI problem given by Definition|3|is NP-hard and APX-
hard. Computing ASI(w) cannot be done in polynomial time, and no polynomial-time approximation
scheme exists unless P = NP.

Proof. Let SLP-OPT denote the optimization problem of finding the smallest SLP generating
w. SLP-OPT is NP-hard and APX-hard [7-9]. By Lemmalf|l| ASI(w) = SLP(w) for all w, so the
identity mapping f(w) = w defines a cost-preserving polynomial reduction. Therefore, both
NP- and APX-hardness results transfer directly to ASI-OPT. m|

4 Conclusions

We have shown that determining the ASI is NP-complete (decision version) and NP-/APX-
hard (optimization version) for an arbitrary finite alphabet. The equality ASI(w) = SLP(w)
places ASI within the same complexity framework as the SGP. Consequently, computing or
approximating ASI(w) is as difficult as finding the smallest grammar generating w.

https://ipipublishing.org/index.php/ipil/ 11

https://ipipublishing.org/index.php/ipil/

Computational Complexity of Determining the Assembly Index

Acknowledgments

I thank my partners Wawrzyniec Bieniawski and Szymon Lukaszyk for their clarifications,
formal corrections, and improvements.

Conflicts of Interest

The author Piotr Masierak was employed by the company Lukaszyk Patent Attorneys. The
author declares that the research was conducted in the absence of any commercial or financial
relationship that could be construed as a potential conflict of interest.

References

(1]

12

Marshall SM, Murray ARG, Cronin L. A probabilistic framework for identifying biosignatures using Pathway Complexity. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017 Dec;375(2109):20160342. Available
from: https://royalsocietypublishing.org/doi/10.1098/rsta.2016.0342.

Marshall SM, Moore DG, Murray ARG, Walker SI, Cronin L. Formalising the Pathways to Life Using Assembly Spaces. Entropy. 2022
Jun;24(7):884. Available from: https://www.mdpi.com/1099-4300,/24/7/884.

Sharma A, Cz’egel D, Lachmann M, Kempes CP, Walker SI, Cronin L. Assembly theory explains and quantifies selection and
evolution. Nature. 2023 Oct;622(7982):321-8. Available from: https://www.nature.com/articles/s41586-023-06600-9.

Lukaszyk S, Bieniawski W. Assembly Theory of Binary Messages. Mathematics. 2024 May;12(10):1600. Available from: https:
//www.mdpi.com/2227-7390/12/10/1600

Kempes CP, Lachmann M, Iannaccone A, Matthew Fricke G, Redwan Chowdhury M, Walker SI, et al. Assembly theory and its
relationship with computational complexity. npj Complexity. 2025 Sep;2(1):27. Available from: https://www.nature.com/articles/
s44260-025-00049-9

Lukaszyk S. On the ”Assembly Theory and its Relationship with Computational Complexity”. IPI Letters. 2025 Jan:1-6. Available
from: https://ipipublishing.org/index.php/ipil/article/view/157

Charikar M, Lehman E, Liu D, Panigrahy R, Prabhakaran M, Sahai A, et al. The smallest grammar problem. IEEE Transactions
on Information Theory. 2005;51(7):2554-76. Available from: https://web.cs.ucla.edu/esahai/work/web/2005%20Publications/
TransOnInfoTheory2005.pdf

Rytter W. Application of Lempel-Ziv factorization to the approximation of grammarbased compression. Theoretical Computer
Science. 2003 Jun;302(1-3):211-22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304397502007776

Casel K, Fernau H, Gaspers S, Gras B, Schmid ML. On the Complexity of the Smallest Grammar Problem over Fixed Alphabets. Theory
of Computing Systems. 2021 Feb; 65(2):344-409. Available from: http://link.springer.com/10.1007/s00224-020-10013-w

https://ipipublishing.org/index.php/ipil/

https://royalsocietypublishing.org/doi/10.1098/rsta.2016.0342.
https://www.mdpi.com/1099-4300/24/7/884.
https://www.nature.com/articles/s41586-023-06600-9.
 https://www.mdpi.com/2227-7390/12/10/1600
 https://www.mdpi.com/2227-7390/12/10/1600
https://www.nature.com/articles/s44260-025-00049-9
https://www.nature.com/articles/s44260-025-00049-9
https://ipipublishing.org/index.php/ipil/article/view/157
https://web.cs.ucla.edu/˜sahai/work/web/2005%20Publications/TransOnInfoTheory2005.pdf
https://web.cs.ucla.edu/˜sahai/work/web/2005%20Publications/TransOnInfoTheory2005.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0304397502007776
http://link.springer.com/10.1007/s00224-020-10013-w
https://ipipublishing.org/index.php/ipil/

	Introduction
	Methods
	Results
	Conclusions

