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Abstract - Vopson and Lepadatu’s “second law of infodynamics” proposes that the information entropy of
physical systems decreases over time, with high-symmetry states representing minimum information entropy.
We interpret this information entropy as structure-information: the relative entropy Istruct = DxL(pllpiso) measur-
ing a distribution’s departure from isotropic equilibrium. This paper provides a thermodynamic mechanism
for the decrease of structure-information. We derive a bound showing that maintaining a low-dimensional
(asymmetric) state requires continuous work input with two components: an informational term and a ge-
ometric contraction term governed by the Jacobian of the projection map. Without this work, systems relax
toward high-symmetry equilibrium where iy« — 0. The second law of infodynamics thus emerges from a
thermodynamic asymmetry: symmetric states require no work to maintain, while asymmetric states are ther-
modynamically costly. This does not contradict the second law of thermodynamics—thermodynamic entropy
increases in the bath precisely because structure-information is being dissipated.

Keywords - Second law of infodynamics; Landauer principle; Symmetry; Dimensionality; Stochastic thermo-
dynamics; Information entropy

1 Introduction

The second law of thermodynamics establishes that entropy increases in isolated systems. Landauer’s
principle [1,2] connects this to computation: erasing one bit of information requires dissipating at
least kgT'In2 of heat. This has been experimentally verified [3] and forms the foundation of the
thermodynamics of information [4,5].

Recently, Vopson and Lepadatu [6,7] proposed a “second law of infodynamics” stating that the in-
formation entropy of physical systems decreases over time. Unlike thermodynamic entropy (which
increases), information content in systems such as genetic sequences, digital data, and atomic con-
figurations appears to evolve toward states of lower information entropy-that is, toward simpler,
more symmetric configurations. This is consistent with Vopson’s earlier mass-energy-information
equivalence principle [8].

A key observation in Vopson [7] is that high symmetry corresponds to low information entropy.
Symmetric states require fewer bits to specify; a sphere is described by one parameter (radius), while
an irregular shape requires many. Many equilibrium macro-states are highly symmetric, suggesting
a connection between symmetry and thermodynamic stability.
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But what is the physical mechanism driving this evolution? Why should information entropy decrease
while thermodynamic entropy increases? And what maintains asymmetric structures when they do
persist?

We do not claim the second law of infodynamics is a new fundamental principle; rather, we show why
it emerges from known thermodynamics. This paper proposes an answer: maintaining asymmetric
structure costs work. We derive a thermodynamic bound showing that confining a system to a
low-dimensional, asymmetric manifold requires continuous energy dissipation. Without this work
input, systems naturally relax toward high-dimensional, symmetric equilibrium. The second law
of infodynamics emerges as a consequence of the thermodynamic asymmetry between states that
require maintenance and states that do not.

2 Symmetry, Dimensionality, and Information

We first establish the connection between symmetry, effective dimensionality, and information con-
tent.

2.1 Symmetry as Low Information Entropy

Following Vopson [7], we observe that symmetric configurations are information-sparse. Consider a
probability distribution p(x) over states x € RP. A maximally symmetric (isotropic) distribution has
the form

Piso(x) = N(0,0°D), 1)

where [ is the identity matrix. This distribution is invariant under rotations and reflections; its
symmetry group is O(D).
An asymmetric distribution breaks this symmetry. For a Gaussian with covariance X,

p(x) = N(O, 1), (2)
the degree of asymmetry can be measured by the structure-information:

1 det Ziso

Istruct := DKL(p ||piso) = E In Jotr

€)

where Li, := ZZ] is the isotropic covariance with the same total variance. This quantity is non-
negative and equals zero only for isotropic distributions.

Reconciling the two second laws. To reconcile the second law of infodynamics with the second
law of thermodynamics, we interpret the “information entropy” of a physical state as its structure-
information-its distinguishability from thermodynamic equilibrium, measured by the relative entropy
Lstruct = Dx1(pllpiso). When a system relaxes to equilibrium, the raw differential entropy H(p) increases
(second law of thermodynamics), but Iyt decreases toward zero (second law of infodynamics).
There is no contradiction: thermodynamic entropy increases in the bath while structure-information-
the system’s departure from symmetry-vanishes. This interpretation aligns with the physics of
negentropy: ordered states are distinguished by their distance from the maximum-entropy baseline,
and it is this distance that decays.

2.2 Effective Dimensionality
Asymmetric distributions concentrate on low-dimensional subspaces. The effective dimensionality is
given by the participation ratio of covariance eigenvalues:
(XiAi)
YAz’

Degt = 4)

2 https://ipipublishing.org/index.php/ipil/
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where {A;} are the eigenvalues of X.. This ranges from 1 (rank-1, maximally asymmetric) to D (isotropic,
maximally symmetric).

The key relationship is:
High symmetry < High effective dimension < Low structure-information

An isotropic sphere has Dggs = D and Isgruct = 0. A line (1D manifold) has Deg ~ 1 and high Igryct.

3 Thermodynamic Cost of Dimensional Confinement

We now derive a thermodynamic bound on the work required to maintain a low-dimensional repre-
sentation.

3.1 Setup

Consider a system with micro-state x € RP evolving under overdamped Langevin dynamics:

X = uF(x) + 2uksT &(t), 5)

where 1 is mobility, T is temperature, and £(t) is Gaussian white noise. Left uncontrolled, this system
diffuses toward an isotropic equilibrium.

A dimensional reduction is a smooth map @ : RP — RF with k < D that projects the high-dimensional
state onto a lower-dimensional representation. Physically realizing such a projection requires confin-
ing the system to a neighborhood of the target manifold.

3.2 Derivation

The entropy production in a stochastic process is bounded by the Kullback-Leibler divergence be-
tween initial and final distributions [5]. For a projection process, the dissipated work (work beyond
the free energy change) satisfies:

Wdiss = kBT -D KL (pinit || ®+Pfinal)/ (6)
where @' is the maximum-entropy lifting of the projected distribution.

Using the change-of-variables formula for probability densities under smooth maps, this KL diver-
gence decomposes into two terms. Let Jo(x) be the kXD Jacobian of ®@. The volume element transforms

as dVy = ,/det(Jo]g)dVp. Substituting into the entropy definition yields:

D= Al-In2 + Co , )
informational geometric

where Al is the coarse-grained information removed (in bits) and

Co = — (Indet(o@fat)"), ®)

is the geometric contraction cost-the average log-volume contraction under the projection, where (-),
denotes the expectation over the maintained distribution p(x).

https://ipipublishing.org/index.php/ipil/ 3
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3.3 The Bound

Combining these results, the geometric maintenance bound is:

Waissmin = kpT(In2 - AL + Co) 9)

Interpretation. This bound has a crucial implication: even if no logical information is erased (Al = 0),
confining a system to a low-dimensional manifold still incurs a geometric cost Cop. The more severe
the dimensional reduction (smaller k relative to D), the larger this cost.

For alinear projection with singular values oy, ..., ox, wehave Cop = — };In 0;. Anisometric projection
(0i = 1) has Ce = 0; curved or contracting projections have Ce > 0.

3.4 From Formation Work to Maintenance Power

The bound in Eq. (9) gives the one-time work to create a low-dimensional state. To maintain it against
thermal relaxation, we must continuously counteract the entropy production of the diffusion process.
In a steady state far from equilibrium, the controller must extract the housekeeping heat Qpi-the heat
continuously dissipated to maintain the non-equilibrium distribution [5,9].

For a system held at non-equilibrium distribution p with structure-information Isyuct, the entropy
production rate is bounded by the time-derivative of the KL divergence between p and the relaxing
distribution p;:

d
Sprod > _aDKL(Pt”PiSO) . (10)
pt=p
For diffusion with coefficient Dy, this housekeeping entropy production is expected to increase with
both Dg;gs and the contraction cost Co. The maintenance power (housekeeping heat flow) required to
sustain the low-dimensional state therefore admits the qualitative dependence:

Pmaint = kBT : Sprod ~ kBT : Ddiff : CCD- (11)

This connects the static cost of dimensional reduction (Eq.[9) to the dynamic cost of maintaining it: the
maintenance power scales with both the geometric complexity of the projection (Ce) and the rate at
which diffusion would otherwise erode the structure (Dgj).

~ = ~ = ~ =

High-D Substrate ® Low-D Representation o) Heat Bath
X e RP — Y = ®(X) € R B T
asymmetric dimensional entropy
(low symmetry) reduction increase

e - - - - -

[Wdiss, i = kgT(IN2 Al + Co)

Al information removed Cqy: geometric contraction cost

-
J

Figure 1: The geometric maintenance bound. Enforcing a low-dimensional representation Y = ®(X) requires work to suppress fluctuations
orthogonal to the target manifold. The minimal dissipation separates into an informational term (bits removed) and a geometric contraction
term (Jacobian cost).

4 Thermodynamic Basis for the Second Law of Infodynamics

The geometric maintenance bound explains why information entropy decreases over time: asymmet-
ric states are thermodynamically expensive, while symmetric states are thermodynamically free.

4 https://ipipublishing.org/index.php/ipil/
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4.1 Relaxation Toward Symmetry

Consider an initially asymmetric (low-Dg) distribution undergoing thermal diffusion. As fluctua-
tions excite the suppressed degrees of freedom, the distribution spreads toward isotropy:

o Effective dimensionality D¢ increases toward D.
e Structure-information gt decreases toward 0.
e Symmetry increases (distribution approaches spherical).

This is illustrated in Figure 2 with a minimal model. An anisotropic Gaussian covariance ¥y =
diag(1, 107%,...,10™%) in D = 20 dimensions evolves under additive diffusion: X(f) = Xo + 2Dt - I.
The effective dimension rises from ~ 1 toward 20, while structure-information decays exponentially
toward zero.

Symmetry increases Information entropy decreases
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Figure 2: Thermal relaxation dissipates structure-information. An initially anisotropic distribution (Deg = 1, high Isyruct) diffuses toward
isotropic equilibrium (Degf — D, Istruct — 0). This is the signature of the second law of infodynamics: without work input, structure-
information (distinguishability from equilibrium) decreases as the system becomes more symmetric. Note that the raw differential entropy
H(p) increases during this process-consistent with the second law of thermodynamics-while Isruct = Dk (pllpiso) decreases. The natural
arrow of time aligns with Vopson’s law only when “information” is interpreted as structure (relative entropy), not as raw uncertainty.

4.2 The Work Cost of Asymmetry

Now consider a controller (biological or artificial) that maintains an asymmetric, low-dimensional
state against thermal relaxation. By Eq. (1I), this requires continuous power input scaling as
Praint = kT - Dgi - Co, where Dyig is the diffusion coefficient characterizing the rate of thermal
relaxation.

The larger the asymmetry (lower Deg, higher Isiruct, larger Co), the more power is required. Con-
versely, symmetric states require zero maintenance power-they are thermodynamic attractors where
the housekeeping heat vanishes.

4.3 Why Information Entropy Decreases

This provides the mechanism for Vopson’s second law:
1. Symmetric states are stable. An isotropic equilibrium persists indefinitely without work input.

2. Asymmetric states are unstable. Maintaining low-dimensional structure requires continuous
energy expenditure.

3. Selection pressure. Over time, systems that cannot pay the maintenance cost relax to symmetry.
Systems that can maintain asymmetry (living organisms, controlled machines) do so only while
energy is available.

https://ipipublishing.org/index.php/ipil/ 5
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The “information entropy” in Vopson’s framework can be identified with our structure-information
struct. Its decrease is not a violation of thermodynamics but a consequence of it: thermodynamic
entropy increases in the heat bath precisely because structure-information is being dissipated through
the relaxation process.

5 Symmetry and the Minimal Description Length

Vopson emphasizes that symmetric configurations require fewer bits to describe. We can make this
precise. For a distribution with covariance ¥, the differential entropy is:

H(p) = % In det(27eX). (12)

The entropy of the isotropic reference is:

D . (2metrX
Hipw) = 5 0(Z5=).

The structure-information (Eq.|3) equals H(piso) — H(p) when the isotropic reference has higher entropy
than the asymmetric distribution (which occurs when eigenvalues are spread over fewer dimensions).

(13)

In information-theoretic terms, specifying a sample from p rather than from pjs, requires fewer bits by
exactly Isuct-but specifying the structure itself requires those bits. The structure-information quantifies
the description complexity of the asymmetry.

This connects to Noether’s theorem [10] and Weyl’s analysis of symmetry [11]: symmetries reduce
the number of independent parameters. A system with O(D) symmetry (full isotropy) has one pa-

rameter (scale). A system with broken symmetry has up to w parameters (full covariance matrix).

From the perspective of Landau theory [12], the thermodynamic cost of broken symmetry can be
understood as the cost of stabilizing the associated Goldstone modes. When rotational symmetry
is broken-confining a particle to a ring in 2D, for example-the radial degree of freedom must be
suppressed. Thermal fluctuations continuously excite this “soft mode,” and the controller must pay
the housekeeping cost to maintain the low-dimensional manifold. The more symmetries are broken,
the more Goldstone-like modes must be stabilized, and the higher the maintenance power [13].

This perspective also illuminates why biological measurement systems face fundamental limits in
the sub-Landauer domain [14]: the work required to maintain an ordered (asymmetric) state places
a floor on the energetic cost of biological information processing. The “projection bound” governing
Maxwell’s demon in continuous substrates [15] reflects the same geometric maintenance cost applied
to measurement.

6 Discussion

6.1 Relation to Vopson’s Framework

Our analysis supports and extends Vopson’s second law of infodynamics in several ways:

e Mechanistic foundation. We provide a thermodynamic mechanism for why information en-
tropy decreases: asymmetric states cost work to maintain.

e Symmetry preference explained. High symmetry corresponds to thermodynamic stability, not
just low information content.

e Compatibility with the second law of thermodynamics. The decrease in information entropy
is accompanied by an increase in thermodynamic entropy in the environment (heat dissipation).
There is no violation.

¢ Quantitative bound. The geometric maintenance bound (Eq.[9) provides a minimum dissipa-
tion for maintaining asymmetric structure.

6 https://ipipublishing.org/index.php/ipil/
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6.2 Biological Implications

Living systems are paradigmatic examples of maintained asymmetry. Cells confine molecular dis-
tributions to specific compartments; neural systems maintain low-dimensional activity manifolds
[16,17]; organisms maintain thermal and chemical gradients far from equilibrium.

Our framework predicts that these systems must continuously pay the dimensional maintenance cost.
Death-the cessation of metabolism-leads to relaxation toward symmetric equilibrium (decomposition,
thermal equilibration). The second law of infodynamics, in this view, is the thermodynamic pressure
that life must continuously resist.

6.3 Limitations

The geometric maintenance bound applies to overdamped stochastic systems near equilibrium. Ex-
tensions to underdamped dynamics, strongly non-equilibrium steady states, and quantum systems
remain to be developed. The connection between our continuous Iyt and discrete information
measures (bits in genetic sequences, digital data) requires further formalization.

7 Conclusion

We have derived a thermodynamic bound-the geometric maintenance bound-that explains the phys-
ical basis for the second law of infodynamics. The key insight is that asymmetry costs work. Systems
naturally relax toward symmetric, high-dimensional equilibrium states that require no energy to
maintain. Maintaining low-dimensional, asymmetric structure requires continuous work input scal-
ing with both the geometric contraction cost Co and the diffusion rate Dg;gs.

This provides a physical mechanism for Vopson’s observation that information entropy decreases
over time: symmetric states are thermodynamically stable attractors. The prevalence of symmetric
equilibria-from crystal structures to the eventual fate of all dissipative systems-reflects thermody-
namic necessity, not merely aesthetic preference.

Crucially, there is no contradiction with the second law of thermodynamics. When structure-
information decreases (Istruct — 0), thermodynamic entropy increases in the heat bath—the two
laws describe complementary aspects of the same relaxation process. The second law of infodynam-
ics is thus revealed not as a new fundamental force, but as the shadow cast by the second law of
thermodynamics: structure costs work, and in a dissipative universe, the path of least resistance is the path
to symmetry.
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