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Abstract The study aimed to demonstrate that the perceived (3+0i)-dimensional space is necessary for biological
evolution due to the exoticR4 property of such a space, which ensures variations of traits between individuals
perceiving the same differentiable structures. Properties of graphs constructed in Boolean spaces {0, 1}n were
researched. The cotan Laplacian of 2-face triangulated n-cube was shown to have a spectrum corresponding
to the Hamming distance distribution of Boolean space, and its regular version was shown to be a Ramanujan
graph for 2 ≤ n ≤ 5 with the smallest integral Ramanujan bound for n = 4. The spectrum of the distance
matrix on the graph comprising 2n n-cubes sharing a common origin was shown to be bounded by irrational
eigenvalues, and if its 2-faces are triangulated, the spectrum of the cotan Laplacian includes all integers from
0 to 3n without the eigenvalue of 3n − 1. The relations of these graphs with Buckminster Fuller’s vector
equilibrium were discussed. Based on Watanabe’s ugly duckling theorem, we defined a trainable activation
function of an artificial neuron in a sparse distributed memory model.

Keywords Boolean spaces; Spectral graph theory; Sparse distributed memory; Activation functions; Neural
architectures; Geometric deep learning; Cotan Laplacian; Exotic R4; Vector equilibrium; Ramanujan graphs;
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1 Introduction

All we perceive is information measured in bits, which are the quanta of information. On the other
hand, we perceive nature now in one, unidirectional temporal dimension and three, bidirectional
spatial dimensions. We can therefore assume that spatial dimensions are real, while the temporal
dimension is imaginary [1]. However, the natural question is, why do we perceive nature in such a
dimensionality? It does not result from the free energy principle [2], which offers a formal description
of self-organizing structures [3], including us, the living systems. Perhaps there are individuals (flat-
landers?) perceiving their universe(s) in n dimensions, with n , 3 spatial ones? Pseudo-Riemannian
manifolds used in general relativity theory are not bound to four dimensions. The combinatorial
proof of Boltzmann’s H-theorem [4] introducing the concept of energy quantization, which led to the
development of quantum theory [5], is irrelevant to any particular dimensionality of space, in which
Ludwig Boltzmann considered the molecules to collide.

The goal of this study was to answer this question and link the perceived spatial-temporal dimen-
sionality with spatial-temporal independent [6-8] information through the perception of a biological
entity and in an information-theoretic approach. Although this goal has not been completed, this
study presents some non-physical patterns [9] we found while pursuing it.
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The paper is structured as follows. Section 2 presents certain properties of three graphs constructed
in Boolean spaces: n-cube 2.1, {n}-cube 2.2, and [n]-cube 2.3 and hints at their applications. If 2n of
such graphs are oriented in space to share a common vertex, they form a larger graph similar to
Buckminster Fuller Vector Equilibrium, which is discussed in Section 3. Section 4 discusses the goal
and findings of this study in the context of n = 4.

2 The Cubes

We begin by outlining three cubic graphs that can be constructed in {0, 1}n Stone space (Boolean
space), n ∈ N, on the set of 2n vertices, where a distinct index m = 1, 2, · · · , 2n and a distinct address
a(m)n = {b1, b2, · · · , bn}, b = {0, 1} are assigned to each vertex (hereinafter by ”a vertex m” we mean ”a
vertex index m”). If we define

a(1)1 B 0, a(2)1 B 1, m1 B 1, 2, . . . , 2n−1, m2 B 2n−1 + 1, 2n−1 + 2, . . . , 2n, (1)

then a Gray code address a(m)n can be assigned to a vertex m recursively as

a(m)n B

{0, a(m)n−1}, m ∈ m1,

{1, a(2n
−m + 1)n−1}, m ∈ m2,

(2)

so that the subsequent addresses {a(m)n, a(m ± 1)n} differ by just one bit. Similarly a binary code
address a(m)n can be assigned to a vertex m recursively (left-msb) as

a(m)n B

{0, a(m)n−1}, m ∈ m1,

{1, a(m − 2n−1)n−1}, m ∈ m2,
(3)

where dec (a(m)n) = m−1. Binary addresses a(m)n can also be randomly assigned to a vertex set. Each
pair of addresses a(k) and a(l), k, l ∈ N define a Hamming distance dHM (a(k), a(l)) between them that
can be arranged in a 2n

× 2n distance matrix

Dk,l B dHM (a(k), a(l)) . (4)

The 1st graph, n-cube, has edges between addresses providing unit Hamming distances; the 2nd

one, {n}-cube, has edges between all vertices; and the 3rd one, [n]-cube, has triangulated 2-faces. The
first two graphs are commonly known.

2.1 n-cube

n-simplicial complexes of discrete exterior calculus disentangle the topological (metric-independent)
and geometrical (metric-dependent) content of the modeled quantities [10], keeping their intrinsic
structure intact. Operators, which in the continuous theory do not use metric information, maintain
this property in the discrete theory as well [11]. Thus, at least in this regard, the simplex formulation
is equivalent to continuous calculus, allowing for an easier discovery of local and global invariants
which are often difficult to recognize if written in tensorial notation [10].

n-cube, having
(n

k
)
2n−k k-faces is the smallest proper n-dimensional hole that can be created in a

simplicial n-manifold. Removing just one n-simplex could not serve as a model of a hole, as one
removes only this internal n-simplex volume, leaving all its facets intact. Thus, Stokes integration over
an n-manifold with one missing n-simplex, not on the boundary of that manifold, is the same as if
this n-simplex were present. Also, an n-orthoplex (dual to n-cube) could not be a proper hole, since
the general formula 2k+1( n

k+1
)

for the number of k-faces of n-orthoplex vanishes1 for k = n, so that it
formally does not have an n-face Besides, all the remaining 2n facets of n-orthoplex (just like all the
n + 1 facets of n-simplex) are (n − 1)-simplices, while all the 2n facets of n-cube are also (n − 1)-cubes.
n-orthoplex cannot be prism-like extruded from a point like an n-cube; it is built by adding two
vertices along a new orthogonal axis and taking the convex hull, forming simplicial facets. n-cube,
n-orthoplex, and n-simplex are the only regular polytopes present in any complex dimension [12].

1( n
n+1

)
= 0 if the binomial coefficient is defined in terms of a falling factorial.
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Figure 1: Gray encoded 3-cube with its associated bipartite graph.

The orthogonal edges of n-cube originating from the vertex having the address a(m) = {0, . . . , 0}
in a way define a 2−n part of a Cartesian coordinate system of Euclidean Rn space (cf. Fig. 6).
Furthermore, as shown in Fig. 1, if the addresses a(m) of the vertices of n-cube are ordered using Gray
code (2), n-cube is a bipartite graph with the first set containing even vertex indices and the second
set containing odd indices.

2.2 {n}-cube

{n}-cube, shown in Fig. 2 for n ∈ {2, 3}, represents Boolean space and it is easily seen that it is
isomorphic to (2n

−1)-simplex and hence has a
( 2n

k+1
)

of k-faces. On the other hand, a regular n-simplex
can be inscribed in an n-cube (using only a subset of the set of its vertices) if and only if n = 2m

− 1 for
m ∈N0 [13]. The degree of a vertex of {n}-cube is 21−n(2n

2
)

which is an odd number.

Based on the properties of this complete graph, Pentti Kanerva [14] introduced the concept of
sparse distributed memory (SDM), a mathematical model for the memory and learning processes of
animals provided with neural networks. Sparseness reflects his hypothesis that not all addresses a(m)
of the address space are implemented. The main attribute of this model is sensitivity to similarity,
meaning that information can be read back not only by giving the original write address but also by
giving one close to it, as measured by the number of mismatched bits (i.e., the Hamming distance
between memory addresses). The SDM model features knowing that one knows and tip of the tongue
phenomena present in biological autonomous learning systems, such as the human brain, that base
their operation on an internal model of the world, which they build through experience [14]. The SDM
is particularly notable for its ability to store and retrieve high-dimensional binary patterns in a robust,
distributed manner [14]. Various architectures of artificial neural networks utilizing the properties of
{n}-cube have been proposed and used for various applications, including vision-detecting, robotics,
signal detection, etc.

The number of addresses that are exactly k bits from an arbitrary address a(m) is the number of
ways to choose k coordinates from a total of n coordinates. Thus, it is given by the binomial coefficient(n

k
)
. An outstanding property of {n}-cube is that the mean Hamming distance between any address am

and all the other addresses (including am) is n/2 (variation is n/4). If an {n}-cube were inscribed in the
closed n-ball with two of its vertices defining the poles, then most of the remaining vertices would lie
at or near the equator. This is called a tendency to orthogonality [14].

Properties of {n}-cube have also been studied by Satosi Watanabe in a framework of Epistemological
Relativity [15]. He noted that each kth bit of an address a(m) could be considered a certain Boolean-
valued starting predicate Qk that can be meaningfully applied to some set of objects. He termed an
address a(m) a disjoint atomic predicate that can be expressed as a conjunction of starting predicates

a(m) =
n⋂

k=1

amkQk, (5)

where amk = 1 if a(m) contains Qk under the conjunction, and amk = 0 if am contains the negation of Qk
under the conjunction. In this approach, starting predicates Qk are unrelated to the spatial addresses of
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Figure 2: (a) {2}-cube and 3-simplex; (b) {3}-cube and 7-simplex. Gray encoding. RGB colors denote increasing Hamming distances
between addresses of the vertices. Dashed lines symbolize rank 2 compound predicates As (edges) related to a vertex m = 1, and the
number of distinct colours is related to the number of degenerate eigenvalues of the cotan Laplacian of [3]-cube.

the vertices. Address a(7) = {101} in Gray encoding, for example, can be formed from true predicates
Q1 = 1, Q2 = 1, and Q3 = 1 using coefficients a71 = 1, a72 = 0, and a73 = 1.

Watanabe also considered Boolean-valued compound predicates As (s = 1, 2, . . . , 22n
), all the

logical functions that can be formed from the starting predicates Qk, with connectives of negation,
conjunction, and disjunction. For {n}-cube, they can also be expressed as a disjunction of vertices

As =

2n⋃
m=1

Asm, (6)

where Asm = 1 if As contains a vertex m under the disjunction and 0 otherwise, so As = {00 . . . 0}denotes
the empty set (∅) containing no vertices and As = {11 . . . 1} denotes the Power set (□) containing all
2n vertices. The sum of ones in the compound predicate As is the rank r of this predicate or the
number of vertices it is built upon. Compound predicates form a half-ordered Boolean lattice in
the sense that there are implicational relations As ⇒ At between predicates As, At, providing that
rank(As) < rank(At). An implicational relation As ⇒ At is equivalent to Asm ≤ Atm,∀m, in other words
Asm = 1⇒ Atm = 1 ∀m. Furthermore, any compound predicate As satisfies ∅ ⇒ As ⇒ □. Compound
predicates As can be thought of as k-simplices of a (2n

− 1)-simplex isomorphic to {n}-cube with:
(−1)-simplex as the empty set ∅ (rank 0 predicate As);
0-simplices as vertices (rank 1 or atomic predicates As);
1-simplices as edges (rank 2 predicates As);
2- simplices as triangles (rank 3 predicates As);
3- simplices as tets (rank 4 predicates As);
. . . ;
k- simplices (rank k + 1 predicates As);
and so on up to the single (2n

− 1)-simplex spanned on all the vertices of the {n}-cube.
Watanabe [15] assumed that an object satisfies or negates each starting predicate Qk. In other

words, any object corresponds to a vertex of {n}-cube. This assumption is the identity of indiscernibles
ontological principle, stating that separate objects cannot have all their properties in common (this
principle is false in the quantum domain [16]. With this assumption in place, a compound predicate
As of rank r ≥ 2 (at least an edge) would be shared by p objects if it included p vertices corresponding
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to these objects. The number of predicates As of rank r ≥ 2 shared by p objects (vertices)

Nr,p =

(
2n
− p

r − p

)
(7)

is the same for any p objects to which these predicates As are applicable (two objects share 1 edge,
three objects share 1 face of (2n

−1)-simplex, etc.). Watanabe regarded the number of shared predicates
as a measure of similarity and the number of not shared predicates as an indication of dissimilarity
[17]. Therefore, any two objects, insofar as they are distinguishable (i.e., correspond to different
vertices), are equally similar. This is Watanabe’s famous ugly duckling theorem (UDT). As a corollary
(or rather a relief) to the UDT, Watanabe suggested [15] that one has to ponderate (give weights to)
the predicates As to assert the similarity of the objects: for two objects to be more similar to each other,
they have to share some more important (more weighty) predicates.

In the SDM, {n}-cube models a single neuron, where the vertices play the role of synapses, the
points of electric contact between neurons, or simply the neuron inputs. The activation function of an
artificial neuron defines the output of that neuron given the set of inputs. Only nonlinear activation
functions allow neural networks to compute nontrivial problems. Their important characteristic is
that they provide a smooth, differentiable transition as input values change, i.e., a small change
in input produces a small change in output. A neuron fires when the activation function exceeds
a specific activation threshold. One of the most popular [18] nonlinear activation functions is the
logistic (aka sigmoid) one

fl(r) =
1

e−µr + 1
, (8)

where r ∈ R is the weighted sum of the neuron inputs and µ is a parameter (here we take µ = 1)2.
Softplus

fsp(r) = ln (er + 1) (9)

is another example of such a function.
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Figure 3: Logistic fl(r) (red), softplus fsp(r)/2n (green), and {n}-cube f{n}(r) (blue) activation functions. (a) {3}-cube, (b) {4}-cube.

If we now assume that the vertices of {n}-cube are synapses, then it remains to define the activation
function and assume a certain activation threshold. We note that

Nr,1 =

(
2n
− 1

r − 1

)
out of

(
2n

r

)
(10)

rank r available compound predicates As (6) of rank r ≥ 1 are related to one vertex. For {3}-cube, for
example, one vertex is related to 1 (out of 8) rank 1, 7 (out of 28) rank 2, 21 (out of 56) rank 3, 35 (out of

2In particular, in parts of the range µ ∈ [0, 4]∨[−2, 4], the logistic map xn+1 = µxn(1−xn), which is analogous to the logistic
function derivative f ′(x) = µ f (x)(1 − f (x)) displays intermittent (irregular alternation of periodic and chaotic dynamics)
behavior.
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70) rank 4, 35 (out of 56) rank 5, 21 (out of 28) rank 6, 7 (out of 8) rank 7 predicates, and with the whole
set of vertices (cf. Fig. 2(b)). The linear sequence {1/8, 7/28, 21/56, 35/70, 35/56, 21/28, 7/8, 1} can be
used to define rectified linear activation function of {3}-cube neuron associated with this vertex. In
general

Nr,p =

p∑
l=1

(
2n
− l

r − 1

)
out of

(
2n

r

)
(11)

rank 1 ≤ r ≤ 2n predicates As are related to p vertices, as illustrated in Fig. 3 showing sequences

f{n}(r, p) =
p∑

l=1

(
2n
− l

r − 1

)
/

(
2n

r

)
(12)

for {3}-cube and {4}-cube and the logistic (8) and softplus (9) activation functions. In particular
f{n}(r, 1) = r/2n and

f{n}(r, 2) = r
2n+1

− 1 − r
2n(2n − 1)

. (13)

We see that the relation (12) is undefined both for r = 0 and for p = 0. For r , 0, it is linear for p = 1,
nonlinear for 1 < p < 2n, and at p = 2n it becomes a unit constant function. Thus, we can think of
{n}-cube vertices as elements of a setP of p memorized objects and of another distinct set R of r activated
synapses overlapping P, where we demand ∃m ∈ P∩R. Then, the relation (12) can be considered the
neuron’s vertex-dependent activation function parametrized by p, which makes it trainable [19]. We
see that the probability of an {n}-cube neuron firing increases, as expected, both with the increasing
number of r activated vertices, as well as with the increasing number of p memorized vertices, where
for p = 2n the neuron is saturated. Notably, the information capacity of a {3}-cube (8 vertices) could
be employed by nature; a neuron has 5-7 dendrites on average [20].

A neuron, as a living biological cell, is a dissipative structure [21], a self-organizing system
maintaining a separable joint state [22] with its environment (Umwelt) through a 2-dimensional and
triangulated [23] holographic screen [24] through which it processes quantum information [25]. That
hints at another cube.

2.3 [n]-cube

A 2-dimensional triangulated surface allows defining the discrete cotan-Laplace operator, assuming
that every relation (edge) between vertex indices k and l carries a real-valued weight

ωkl =
1
2
(
cotαkl + cot βkl

)
, (14)

where αkl and βkl are the angles opposite the edge between vertices k and l in the two triangles sharing
that edge. This equality, called the cotangent formula, has been derived in many different ways and
rediscovered many times over the years [26].

If the vertices are ordered, this ordering can be used to induce the orientation of the edges and
angles αkl and βkl, as k < l⇔ k→ l. Then if αkl and βkl are directed towards vertex l, weights ωkl (14)
are positive, while if they are directed towards vertex k, weights ωkl are negative

ωkl =
1
2
(
cot (−αkl) + cot

(
−βkl

))
= −

1
2
(
cot (αkl) + cot

(
βkl

))
. (15)

For a locally disk-like triangulated manifold allowing at most two triangles incident to an edge, the
discrete cotan-Laplace operator acting on a function u : V → R, where V is a vertex set of this graph,
can be defined [27] as:

(Lu)k =
∑
l∼k

ωkl (uk − ul) , (16)
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where the sum ranges over all vertices l that are connected to the vertex k. This allows for representing
the linear operator L as a matrix with the entries

Lkl =


−ωkl if k , l and they are connected∑

m∼k ωkm if k = l
0 otherwise

, (17)

which is called the weakly defined discrete Laplace matrix or just cotan Laplacian [27]. This is, in
general, not the same as Kirchhoff matrix (G − E), where G is the (diagonal) degree matrix and E,
the adjacency matrix of the graph. Zeroing ωkl for disconnected vertices encapsulates the locality of
action of the Laplacian operator (16): changing the value of ul at a vertex l does not alter the value
(Lu)k at vertex k if these vertices are unrelated.

We note in passing that in a weighted adjacency matrix, entries pertaining to unrelated vertices
should be set to infinity or a suitable large value, as zero in these locations would be incorrectly
interpreted as an edge with no distance, cost, etc. Both (14) and (15) guarantee setting such entries to
infinity if αkl, βkl ∈ {0, π}. One could say that in this case, such a relation is a flat relation.

One may define the gradient ∇ukl between the connected vertices k and l as the finite difference
(uk − ul). Accordingly, one defines the discrete Dirichlet energy of u as

ED [u] B
1
2

∑
(k,l)∈E

ωkl (uk − ul)
2 =

1
2

uTLu, (18)

where the sum ranges over all edges between the vertices. Solving the discrete cotan-Laplace equa-
tion Lu = 0 for all vertices and subject to appropriate boundary conditions is equivalent to solving the
variational problem of finding a function u that satisfies the boundary conditions and has minimal
Dirichlet energy (18). The Delaunay triangle mesh (dual to the Voronoi one) features many optimality
properties: the triangles are the fattest possible [28], it maximizes the minimal angles in the triangula-
tion, and more importantly, the Delaunay triangulation of the set of vertices of n-manifold minimizes
the Dirichlet energy of any piecewise linear function u over this point set (Rippa’s theorem [29]).

In particular, the cotan Laplacian (17):

• is singular (non-invertible), as it has a zero eigenvalue;

• is symmetric (self-adjoint) (ωkl = ωlk) and thus has real eigenvalues and orthogonal eigenvectors;

• with positive weights (14) it is always positive semi-definite, and with negative weights (15) it
is always negative semi-definite (these are not necessary conditions, however [27];

• it has only constant functions u in its kernel [27].

Furthermore, the spectrum of the cotan Laplacian obtains its minimum on a Delaunay triangula-
tion in the sense that the kth eigenvalue of the cotan Laplacian of any triangulation of a fixed point
set is bounded below by the kth eigenvalue resulting from the cotan Laplacian associated with the
Delaunay triangulation of this point set [28].

The empty circle property of Delaunay triangulation implies that an interior edge is a Delaunay
edge iff αkl+βkl ≤ π, which is equivalent to sin(αkl+βkl) ≥ 0 or cot(αkl)+cot(βkl) ≥ 0. It has been shown
[30] that any convex quadrilateral formed by two adjacent triangles, which does not satisfy the empty
circle property, may be made Delaunay by flipping the diagonal edge of the quadrilateral, common to
the two triangles, to the opposite diagonal. This is called a Delaunay flip, and a sequence of Delaunay
flips will always converge to a Delaunay triangulation [28]. The borderline case for a Delaunay flip
is obviously a rectangle, or a square in particular, having both Delaunay diagonal edges. This leads
to the following definition and theorem.

Definition 1. [n]-cube is n-cube with triangulated 2-faces.

Theorem 1. Any triangulation of [n]-cube generates the same cotan Laplacian.
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Figure 4: Two diamond graphs on 2-faces of n-cube (here: Gray encoding with positive weights (14)) have the same cotan Laplacian that
defines [n]-cube cotan Laplacian.

Proof. For 2-face edges ωkl = 1 since cot(π/4) = 1 for each angle and for 2-faces diagonals ωkl = 0
since both angles opposite to a diagonal are right angles (cot(π/2) = 0). Therefore the coefficients Lkl
of the matrix (17) are zero not only for disconnected pairs of vertices k and l but also for all pairs of
vertices, except for 2-face edges, where Lkl = −1 and diagonal coefficients where Lkk = n, as any vertex
of n-cube is connected with n 2-face edges (in case of the weights (15) signs of Lkl are reversed). □

Technically, cotan Laplacian for [n]-cube, shown in Figs. 4, 5, can be easily produced from the
distance matrix D (4) by setting Lkk = n, negating ones and zeroing all the other entries (in case of the
weights (15), the signs are reversed). Since cot(π/2) = 0, only the ordering of the vertex indices (Gray,
binary, etc.) changes the form of the cotan Laplacian.
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Figure 5: [3]-cube. (a) binary, encoded (b) Gray encoded. For Gray encoding, colors represent even (orange) and odd (green) arrangements
of 2-face diagonals.

Theorem 2. For n > 2, the eigenvalues of the cotan-Laplacian of [n]-cube correspond to twice the
binomial distribution of Hamming distances between any address a(m) and addresses of all vertices.
For the weights (14) 0 is the minimum eigenvalue; for the weights (15) 0 is the maximum eigenvalue,
and the distances are negative.

Proof. Direct calculation for consecutive n. □
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Theorem 2 is interesting since the defining equation (17) is unrelated to the metric and/or the
coordinates of the vertices. The binomial distribution of the Hamming distances between the coordi-
nates of a vertex and all the other vertices arises naturally from the angles of 2-face triangulation on
[n]-cube (e.g., λ ∈ {0, 2, 2, 2, 4, 4, 4, 6} for n = 3, cf. Fig 2).

The cotan Laplacian L of [n]-cube has the following additional properties to the cotan Laplacian
(17) of any 2-dimensional triangulated surface (the list is not exhaustive; certain properties of L
are possibly duplicated; (14) is assumed and binary or Gray encoding is necessary unless indicated
otherwise):

• is bisymmetric, that is both symmetric (L = LT) and centrosymmetric (LJ = JL, where J is the
exchange matrix having 2n−1 eigenvalues +1 and 2n−1 eigenvalues −1);

• its eigengap (the difference between two successive eigenvalues) equals 2;

• its spectral radius equals 2n;

• its trace equals n2n;

• columns and rows of L are linearly dependent, so that Laplace’s equation for [n]-cube, which is
a homogeneous system

Lu = 0 (19)

has a non-trivial solution;

• the solutions of (19) are constant vectors uv (with all components equal) in any encoding;
therefore if up is any specific solution to Poisson’s equation for [n]-cube, which is the linear
system

Lu = f (20)

then the entire solution set can be described as {up + uv}, where uv is a constant vector solving
Laplace’s equation (19).

From Theorem 1 it follows that the discrete cotan Laplacian (17) is the same for any arrangement
of 2-face diagonals including both diagonals on each 2-face. However, the adjacency matrices of such
graphs depend on this arrangement. We found interesting properties of the spectrum of the adjacency
matrix of [n]-cube if both diagonals are present.

Theorem 3. The maximum of the absolute values of all nontrivial eigenvalues of the adjacency matrix
of the regular [n]-cube is

λ2 B max
k,n
|λn| =

n∑
k=1

k − 2n =
n(n − 3)

2
(21)

(negation of A080956 OEIS sequence). Thus
(
n +

(n
2
))

-regular [n]-cube is Ramanujan graph for n < 6,
that is

n(n − 3)
2

≤ 2

√
n +

(
n
2

)
− 1 = 2

√
n2 + n − 2

2
⇔ 1 < n < 6. (22)

Proof. Direct calculation for consecutive n. The largest eigenvalue of the adjacency matrix of a d-
regular graph, like an [n]-cube with both triangulations, is the vertex degree d. Hence, this is a
trivial eigenvalue. A Ramanujan graph is a d-regular graph in which the second-largest eigenvalue
in magnitude, which measures the graph’s expansion properties, satisfies λ2 ≤ 2

√
d − 1. □

Theorem 4. Integer values of the Ramanujan bound of regular [n]-cube (RHS of the inequality (22))
form A075848 OEIS sequence {0, 6, 36, 210, 1224, . . . } are given by

3

2
√

2

[
(3 + 2

√

2)k
− (3 − 2

√

2)k
]

(23)
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and n’s yielding these integer values form A072221 OEIS sequence {1, 4, 25, 148, 865, . . . } are given by

3
4

[
(3 + 2

√

2)k + (3 − 2
√

2)k
]
−

1
2
, (24)

where k ∈N0.

Proof. Direct calculation for consecutive n. □

In the case of n-cubes λ2 = n or λ2 = n − 2 if we consider bipartite Ramanujan graphs, so the
Ramanujan graph condition is satisfied only for n = 2 in the former case and for 4−

√
2 ≤ n ≤ 4+

√
2

(that is for 2 ≤ n ≤ 6 if n ∈N) in the latter one. For {n}-cubes λ2 = −1, so all {n}-cubes are Ramanujan
graphs.

3 Fourth cube

The fourth cube contains 2n of n-, {n}-, or [n]-cubes, wherein one vertex is common to all of them.

Definition 2. 2n-cube is defined by 2n n-cubes sharing common vertex address {0, 0, . . . , 0}.

This structure has 3n vertices and (
n
k

)
3n−k2k (25)

k-faces, k = 0, 1, . . . ,n (OEIS A038220) and the sum over k of all k-faces is 5n. The number of addresses
of 2n-cube having the same Hamming weight is (OEIS A013609)(

n
k

)
2k. (26)

2, 110

1, 111

3, 111

5, 100

4, 101

6, 101

8, 110

7, 111

9, 111

11, 010

10, 011

12, 011

14, 000

13, 001

15, 001

17, 010

16, 011

18, 011

20, 110

19, 111

21, 111

23, 100

22, 101

24, 101

26, 110

25, 111

27, 111

(a) 1, 111

5, 100

8, 110

25, 111

13, 001

16, 011

19, 111

22, 101

26, 110 2, 110

3, 111

4, 101

6, 101

7, 111

9, 111

10, 011

11, 010

12, 011

14, 000
15, 001

17, 010

18, 011

20, 110

21, 111

23, 100

24, 101

27, 111 (b)

Figure 6: (a) unit and
√

2 radii (3)-balls in binary encoded 23-cube, (b) graph of this structure.

Definition 3. [2n]-cube is 2n-cube with triangulated 2-faces.

Definition 4. {2n
}-cube is defined by 2n

{n}-cubes sharing common vertex address {0, 0, . . . , 0}.

2n-cube resembles the Cartesian coordinate system of Rn, as shown in Fig. 6, wherein the signs of
coordinates are provided by vertex indexation. In other words, 2n-cube provides a bijective relation
between the indices of 3n vertices it comprises and their coordinates in n-dimensional space. 2n-cube
corresponds to unit n-cube, as shown in Fig. 7 for n = 3; there is only one central vertex 14 having
address a(14) = {0, 0, 0} from which one can recursively walk to six 1-norm vertices 13, 15; 11, 17
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and 5, 23 by adding 3k to or subtracting 3k from the vertex index with k = 0, 1, 2 and modifying the
corresponding bit of the new vertex address, and so on to 2-norm vertices up to 3-norm vertices 1, 3;
7, 9; 19, 21; 25, 27 having address {1, 1, 1}.

Nonetheless, the Hamming distance between vertices having different indices but the same ad-
dresses is zero, even though the Euclidean metric between the points having Cartesian coordinates
induced by these vertices is between 2 and 2

√
n. The Hamming distance between addresses of

vertices 1 and 27 of 23-cube, for example, is 0, even though the Euclidean metric between Cartesian
coordinates induced by these vertices is 2

√
3.

±3
0

14

000

13;15

001

11;17

0  01

10,12;16,18

011

5;23

001

4,6;22,24

01 1

2,8;20,26

011

1,3;7,9;19,21;25,27

111

±3
1

±3
2

±3
1

±3
0

±3
2

±3
2

±3
2

±3
1

±3
1

±3
0

±3
0

2

110

1

111

3

111

5

100

4

101

6

101

8

110

7

111

9

111

11

010

10

011

12

011

14

000

13

001

15

001

17

010

16

011

18

011

20

110

19

111

21

111

23

100

22

101

24

101

26

110

25

111

27

111

Figure 7: 2n-cube index to address mapping (binary encoding) for n = 3.

Certain properties of these graphs are discussed below.

Theorem 5. The spectrum of the adjacency matrix of 2n-cube in Gray or binary encoding is symmetric,
degenerate (for n ≥ 2), and includes all multiplicities of

√
2 from −n

√
2 to n

√
2. Multiplicities of the

same eigenvalues form a trinomial triangle.

Proof. Direct calculation for consecutive n. □

Theorem 6. The spectrum of the cotan Laplacian (17) of [2n]-cube in Gray or binary encoding is
degenerate and includes all integers from 0 to 3n without the eigenvalue of 3n − 1. Multiplicities of
the same eigenvalues form A038717 OEIS sequence.

Proof. Direct calculation for consecutive n. □

Some of the further properties of the cotan Laplacian of the [2n]-cube are (again assuming positive
weights (14) and binary or Gray ordering of vertices to center the origin):

• it is bisymmetric;

• its diagonal entries span from n to 2n;

• its spectral gap (the difference between the two largest eigenvalues) equals 2; otherwise, the
eigengap is 1;

• its spectral radius equals 3n;

• it has ⌈3n/2⌉ symmetric (JxS = xS) orthonormal eigenvectors xS and ⌊3n/2⌋ antisymmetric (JxA =
−xA) orthonormal eigenvectors xA [31];

2n-cube enables to inscribe all n-balls having radii
√

k, where k ∈ {1, 2, . . . ,n} inside it (Disc in 4
squares, ball in 8 cubes, etc.), having surfaces kissing all vertices having addresses distanced k bits
from the center, as shown in Fig. 6 and 8 .

Theorem 7. The distance matrix for binary and Gray encoded 2n-cube is the same.
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3, 11 6, 01 9, 11

1, 11 4, 01

2, 10

7, 11

5, 00
8, 10

Figure 8: Unit and
√

2 radii (2)-balls in binary encoded [22]-cube.

Proof. Direct calculation for consecutive n. Both binary and Gray encoding give the same norms of
the addresses with the index m = ⌊3n/2⌋ + 1 as the origin. □

Theorem 8. The spectrum of the bisymmetric distance matrix of 2n-cube has a distinct irrational
minimum negative eigenvalue and a distinct irrational maximum positive eigenvalue given by

λmin /max(n) =
[
2(n − 1) ∓

√
2(2n + 1)(n + 2)

]
3n−2, (27)

and contains n − 1 integer negative eigenvalues given by

λ2 = −4 · 3n−2 (28)

and 3n
− n − 1 (OEIS A060188) zero eigenvalues.

Proof. Direct calculation for consecutive n. □

The sums {0, 4, 24, 108, . . . } of the eigenvalues (27) satisfy

λmin + λmax = 4(n − 1)3n−2 (29)

which is the OEIS integer sequence A120908, while the products −{2, 36, 486, 5832, . . . } of the eigen-
values (27) satisfy

λminλmax = −2n32n−2 (30)

forming the integer sequence, which is close to the OEIS sequence A288834 (every 2nd entry’s modulus
agrees). Also |λmin(7) + λmax(7)| = | − λmin(4)λmax(4)| = 5832 is the only common value in modulus
shared by the sums (29) and products (30). The eigenvalues (28) form the opposite of the OEIS
sequence A003946 for n ≥ 2 and the sum of all eigenvalues of the distance matrix of 2n-cube vanishes.

An n-dimensional simplicial companion of 2n-cube is n-vector equilibrium, a structure featuring
radial equilateral symmetry (circumradius equals the edge length) for any n ∈ N defined by Buck-
minster Fuller for n = 3. External vertices of n-vector equilibria are vertices of Stott expanded regular
simplices by their dual ones, polytopes forming a dimensional sequence listed [32] in Table 2. All
these polytopes (for n ≥ 1) are 3-layered stacks of vertex layers. The convex hull of the 1st layer
is the corresponding (n − 1)-simplex, which thus is a true facet of that polytope, the convex hull
(cross-section) of the 2nd, equatorial layer is that expanded (n− 1)-simplex, and the convex hull of the
3rd layer is the (n − 1)-simplex, dual to the (n − 1)-simplex of the 1st layer. A comparison of 2n-cubes
and n-vector equilibrium is illustrated in Table 1 for n ≤ 3. The number of the external (other than the
origin) vertices |v(n)| of the n-vector equilibrium is A279019 OEIS sequence, the least possible number
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Table 1: 2n-cubes and n-vector equilibria.

n 2n-cube n-vector equilibrium
−1 ∅

0

1 1 0 1

1 2 3

2

1

11

2

10

3

11

4

01

5

00

6

01

7

11

8

10

9

11

2

1/2, 3/2√

3

1/2, 3/2√

1

10

4

00

7

10

5

1/2, 3/2√

6

1/2, 3/2√

3

2

110

1

111

3

111

5

100

4

101

6

101

8

110

7

111

9

111

11

010

10

011

12

011

14

000

13

001

15

001

17

010

16

011

18

011

20

110

19

111

21

111

23

100

22

101

24

101

26

110

25

111

27

111

1

100

7

000
13

100

2

1/2,1/2, 2/2√

12

aab

3

aab

11

aab

10

aab
5

010

9

010

6

aab

4

aab

8

aab

Table 2: Stott expanded regular simplices by their dual ones.

n Dynkin diagram name |v(n)|
−1 ∅ empty set 0
0 1 point 0
1 3 two line segments 2
2 x3x=6 regular hexagon 6
3 x3o3x=co cuboctahedron 12
4 x3o3o3x=spid runcinated 4-simplex 20
5 x3o3o3o3x=scad stericated 5-simplex 30
6 x3o3o3o3o3x=staf pentellated 6-simplex 42
7 x3o3o3o3o3o3x=suph hexicated 7-simplex 56
8 x3o3o3o3o3o3o3x=soxeb heptellated 8-simplex 72
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of diagonals of a simple convex polyhedron with n faces, which is also twice the sum of the natural
numbers less than or equal n, and can also be obtained by the following recurrence

|v(n)| = n(n + 1) = 2
n∑

k=0

k = |v(n − 1)| + 2n, |v(−1)| B 0. (31)

|v(n)| equals the kissing number of Rn, the greatest number of non-overlapping unit spheres that can
be arranged in Rn such that they each touch a common unit sphere, for 1 ≤ n ≤ 3. But |v(n)| (31)
grows much slower than the kissing number for n ≥ 4. For 2 ≤ n ≤ 3, an n-vector equilibrium can
be oriented in Rn such that its 2(n − 1) external vertices and the central vertex define a Cartesian
coordinate system for Rn−1. This cannot be done for n > 3 as the number of the remaining external
vertices is |v(n)| − 2(n − 1) = n2

− n + 2, while 2n is required, and n2
− n + 2 = 2n only for 1 ≤ n ≤ 3.

Cubes follow generalized principles (that is, the rules that hold without exception, according to
Buckminster Fuller [33] (p. 16)) with regard to their dimensionality (allowing for direct calculation
for consecutive n), although they do not provide optimal energetic conditions. Unit 3-balls, for
example, placed in the vertices of 23-cube will not form a spatially optimal and stable arrangement.
Conversely, n-vector equilibria do not follow generalized principles but seem to follow synergetic
principles, guiding the works of nature [33] (p. 5).

4 Discussion

Biological evolution is a change in the heritable characteristics of biological populations of individuals
over their successive generations. These characteristics are the information passed on from an
individual parent(s) to the individual offspring during reproduction. Evolution is the process by
which traits that enhance survival and reproduction become more common in successive population
generations, wherein

1. variation of phenotypic traits exists within populations of individuals;

2. different traits confer different rates of survival and reproduction; and

3. these traits can be passed from generation to generation.

An individual is a perceiving entity. A cell, an organism, a biological neural network, a liquid brain
[34] in particular. But not a virus, DNA, or AI. Perception is a mapping between external informa-
tion (the individual’s Umwelt) and corresponding memorized information stored in the individual’s
memory. Hence, information exists only due to this mapping, and the SDM is ideal for storing a
predictive model of the world [14]. It has been demonstrated [35] that the process of memorizing
information does not require neural networks. Memory has evolved solely to enable reproductive
fitness. It is a memory that enables one to perceive movement despite Zeno’s paradoxes of motion.

Only for R4 there exists an uncountable family of non-diffeomorphic differentiable structures
which are homeomorphic to R4 [36] (for every such smooth structure, there exists a simplicial trian-
gulation, its discrete version [37]. This property is known as exotic R4. For n ∈ {1, 2, 3}, any smooth
manifold homeomorphic to Rn is also diffeomorphic to Rn. For n > 4, examples of homeomorphic
but not diffeomorphic pairs on spheres have been found but are countable (cf. Milnor’s sphere for
n = 7). For n , 4 exotic Rn‘s do not exist [38].

This feature of 4-dimensional space that we perceive indicates that it is necessary for biological
evolution. Indeed, for n ∈ {1, 2, 3}, any differentiable structure perceived by an individual would be
diffeomorphic to the corresponding differentiable structure that this individual has already memo-
rized. There would be only one equivalence class between them. This, in turn, would contradict the
principles of biological evolution: no variations of traits would exist, the same traits would confer
the same rates of survival and reproduction, and there would be no need to pass these same traits
from generation to generation. That implies that only n = 3 + 0i dimensions allow for variations of
traits between any two individuals that perceive the same differentiable structure. Dimension n > 4
provides examples of homeomorphic but not diffeomorphic pairs of differentiable structures. But
their number is finite, so a sufficiently large population of individuals would soon saturate this set,
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and the evolution would terminate. Physical objects are not the objective reality; they are simply
elements of one’s user interface [39]. But because of the exotic R4, these elements must be perceived
instantaneously as 3-dimensional.

We acknowledge that the claimed necessity of four-dimensional perception was not rigorously
demonstrated in this study, as we did not address the mechanism by which a biological organism’s
perception of a differentiable structure (a mathematical abstraction) is mapped into a memorized
predictive model. A rigorous demonstration of this claim may be difficult due to the fundamentally
incomputable nature of living organisms [40].

Observer independence has been invalidated in a quantum photonic experiment [41] (implement-
ing the gedanken experiment proposed in [42], which demonstrated that no general framework exists
in which all observers can reconcile all their recorded facts. That means there is no (single or unique)
objective reality that an observer could perceive and communicate to another. This by no means boils
down to subjectivism since the existence of observer-dependent (aka subjective) facts, as such, does
not preclude the existence of an observer-independent, general framework. But such a framework
would contradict the results of this experiment.

Also, the UDT asserts that an observer-independent (objective) reality cannot be constructed by
observer-independent facts, i.e., equally similar (i.e., the same) objects, particles, etc. The UDT holds
trivially for points in a space: any two points are equally similar insofar as they are distinguishable.
The corollary of the UDT (assigning individual weights to the predicates (6) to assert the similarity of
the objects) is just the 2nd fact of evolution (differential fitness). Some individuals do it locally better,
some do it locally worse. One simply learns to discern and for n = 4 every individual memorizes its
own unique version of observer-dependent reality that it perceives through the (2 + 0i)-dimensional
holographic sphere of perception, triangulated with Planck areas corresponding to bits of information.
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lichkeitsrechnung resp. den Sätzen über das Wärmegleichgewicht. Cambridge Library Collection - Physical Sciences, volume 2,
pages 164–223. Cambridge University Press, 2012.

[5] Thomas S. Kuhn. Black-body theory and the quantum discontinuity: 1894–1912. Clarendon Press, Oxford, 1978.

[6] A. N. Kolmogorov. Combinatorial foundations of information theory and the calculus of probabilities. Russian Mathematical
Surveys, 38(4):29–40, August 1983.

[7] Mioara Mugur-Schachter. On a Crucial Problem in Probabilities and Solution, 2008.

[8] David Jennings and Matthew Leifer. No return to classical reality. Contemporary Physics, 57(1):60–82, January 2016.

[9] Michael Levin. Self-Improvising Memory: A Perspective on Memories as Agential, Dynamically Reinterpreting Cognitive Glue.
Entropy, 26(6):481, May 2024.

[10] Mathieu Desbrun, Eva Kanso, and Yiying Tong. Discrete differential forms for computational modeling. In ACM SIGGRAPH ASIA
2008 courses on - SIGGRAPH Asia ’08, pages 1–17, Singapore, 2008. ACM Press.

[11] Anil Nirmal Hirani. Discrete exterior calculus. PhD thesis, California Institute of Technology, June 2003.

[12] Szymon Łukaszyk and Andrzej Tomski. Omnidimensional Convex Polytopes. Symmetry, 15(3):755, March 2023.

[13] Andrei Markov. Regular Polytopes in Zn, 2011.

32 https://ipipublishing.org/index.php/ipil/

https://ipipublishing.org/index.php/ipil/


Four Cubes

[14] Pentti Kanerva. Sparse distributed memory. MIT Press, Cambridge, Mass, 1988.

[15] Satosi Watanabe. Epistemological Relativity. Annals of the Japan Association for Philosophy of Science, 7(1):1–14, 1986.

[16] S. Lukaszyk. A new concept of probability metric and its applications in approximation of scattered data sets. Computational
Mechanics, 33(4):299–304, March 2004.

[17] Satoshi Watanabe. Knowing and guessing: a quantitative study of inference and information. Wiley, New York, 1969.

[18] Tomasz Szandała. Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks. In Akash Kumar
Bhoi et al., editors, Bio-inspired Neurocomputing, volume 903, pages 203–224. Springer Singapore, 2021.
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[22] Chris Fields, James F. Glazebrook, and Antonino Marcianò. Reference Frame Induced Symmetry Breaking on Holographic Screens.
Symmetry, 13(3):408, March 2021.

[23] Szymon Łukaszyk. Black Hole Horizons as Patternless Binary Messages and Markers of Dimensionality, chapter 15, pages 317–374.
Nova Science Publishers, 2023.

[24] G. ’t Hooft. Dimensional Reduction in Quantum Gravity, 1993.

[25] Szymon Łukaszyk. Life as the explanation of the measurement problem. Journal of Physics: Conference Series, 2701(1):012124,
February 2024.

[26] Keenan Crane. The n-dimensional cotangent formula. https://www.cs.cmu.edu/˜kmcrane/Projects/Other/nDCotanFormula.
pdf, 2019. Accessed: 2025-07-13.

[27] Max Wardetzky. A Primer on Laplacians. Taylor & Francis, CRC Press, Boca Raton, 2017.

[28] Renjie Chen, Yin Xu, Craig Gotsman, and Ligang Liu. A spectral characterization of the Delaunay triangulation. Computer Aided
Geometric Design, 27(4):295–300, May 2010.

[29] Samuel Rippa. Minimal roughness property of the Delaunay triangulation. Computer Aided Geometric Design, 7(6):489–497,
November 1990.

[30] Charles L. Lawson. Transforming triangulations. Discrete Mathematics, 3(4):365–372, 1972.

[31] A. Cantoni and P. Butler. Eigenvalues and eigenvectors of symmetric centrosymmetric matrices. Linear Algebra and its Applications,
13(3):275–288, 1976.

[32] Klitzing. Re: what is the 5d vector equilibrium? http://hi.gher.space/forum/viewtopic.php?f=32&t=2207#p25149, 2016. Ac-
cessed: 2025-07-13.

[33] Amy C. Edmondson. A Fuller Explanation. Birkhäuser Boston, Boston, MA, 1987.
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