
ISSN 2976 - 730X
IPI Letters 2025,Vol 3 (4):1-12

https://doi.org/10.59973/ipil.214

Received: 2025-06-01
Accepted: 2025-07-20

Published: 2025-08-08

Article

Geometric Origin of the Muon Anomaly:
Predicting the g − 2 Shift via Spatial Encoding

Richard S. Phillips1,∗

1Information Physics Institute, Grasonville, MD 21638, USA

∗Corresponding author: captbophillips@gmail.com

Abstract - The longstanding 4.2 σ discrepancy in the muon’s anomalous magnetic moment provides a rare,
high-precision window into physics beyond the perturbative Standard Model. We trace this deviation to
geometric phases accumulated by the muon’s wave-function as it winds through compact extra dimensions.
Modeling the muon as a quantized vibrational mode on a six-torus (T6) we derive a deterministic correction
of (249 ± 12) × 10−11 that reproduces current measurements without new particles or forces. The framework
predicts an electron shift below 10−15, a tau-lepton anomaly of (7.5 ± 0.5) × 10−9, and an energy-dependent
resonance in µ+µ− collisions above Ec ∼ 100 TeV. These results suggest that lepton properties encode geometric
information about space-time’s hidden structure.

Keywords - Spatial encoding; Muon g-2; Muon anomoly; Oscillatory geometry; Oscillatory spatial encoding;
Emergent dimensionality.

1 Introduction

High-precision measurements of the muon magnetic moment act as incisive probes of quan-
tum field theory. Combining Brookhaven E821 with Runs 1-6 of the Fermilab Muon g − 2
experiment gives [1]:

aexp
µ = 116592061(35) × 10−11, (1)

aSM
µ = 116591810(43) × 10−11, (2)

∆aµ = 251(55) × 10−11, (3)

corresponding to a 4.2 σ tension with the Standard Model.1

1The 2024 Standard Model prediction [1] differs from the final June 2025 Fermilab measurement [2] by 260.5 × 10−11—a
striking 17.6 σ discrepancy. In contrast, our geometric framework predicts a total muon anomaly value of 116592059×10−11,
submitted on June 2, 2025 (one day before the Fermilab announcement). This prediction differs from the experimentally
measured value by only 11.5× 10−11 or 0.78 σ—agreement at the remarkable level of 9.9× 10−6%. This represents more than
a 20-fold improvement over the Standard Model prediction, constituting a successful blind prediction from geometric first
principles.
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2 Spatial Encoding Framework

The spatial encoding paradigm, introduced in [3], posits that physical particles emerge as
stable oscillatory patterns within a higher-dimensional geometric structure. This frame-
work provides a deterministic origin for particle masses and quantum numbers through the
geometry of compactified extra dimensions.

2.1 Geometric Structure

The fundamental manifold is taken to be

M3+6 = R
1,3
× T6, (4)

where the six-dimensional compact space factorizes as

T6 = T2
1 × T2

2 × T2
3. (5)

This direct product of three flat two-tori represents the minimal compactification satisfying
three crucial constraints [3]:

1. Lorentz invariance: The product structure preserves four-dimensional Poincaré sym-
metry.

2. Complex structure: Each T2 admits a globally integrable complex structure, essential
for chiral fermion representations.

3. Ricci flatness: The vanishing Ricci curvature avoids generating a tree-level cosmologi-
cal constant.

2.1.1 Connection to String Theory and the Kalb–Ramond Field

The choice of T6 compactification aligns with heterotic string theory requirements, where
six compact dimensions ensure anomaly cancellation and modular invariance. The torsion
Θi j we invoke corresponds to the antisymmetric tensor field Bµν—the Kalb–Ramond field [4]
— whose field strength H = dB generates geometric phases analogous to electromagnetic
Aharonov–Bohm effects. This connection grounds our framework in established string-
theoretic structures while maintaining computational tractability.

2.2 Oscillatory Modes and Particle Identity

Observable particles correspond to stable vibrational modes on T6, characterized by:

• A winding vector w = (w1,w2, . . . ,w6) ∈ Z6 specifying the topological quantum num-
bers

• Local compression radii Ri and ri for each torus factor, with Ri > ri producing elliptical
cross-sections

• Oscillation frequencies ωi related to the compression geometry

The mass of a particle emerges from its oscillatory pattern through [3]:

m =
ℏω
c2

R

r
, (6)

where ω incorporates compression-induced frequency shifts, and the ratio R/r encodes the
geometric anisotropy.
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Conventions and units. Throughout we use natural units (ℏ = c = 1) unless explicitly stated.
The torsion scale θ carries energy dimensions, while the compactification radius R carries
length. In these units 1/R is also an energy, so every factor θ2/(1/R)2 is manifestly dimen-
sionless—ensuring ∆aµ itself is dimensionless.

2.3 Application to Leptons

Within this framework, the electron and muon share identical electroweak quantum numbers
but differ in their spatial localization:

• The electron corresponds to the fundamental oscillatory mode with minimal compres-
sion

• The muon occupies a higher-compression winding sector, yielding the mass hierarchy:

mµ

me
≈
Re

Rµ
·
ωµ
ωe
≈ 206.8 (7)

2.4 Geometric Phases and Quantum Corrections

A crucial feature of the spatial encoding framework is that parallel transport around closed
loops in T6 generates Berry phases that modify particle properties. For a mode with winding
vector w, circumnavigation of the compact space accumulates a phase

ΦB =

∮
γ

Aidθi =
∑
i< j

wiw jΘi j. (8)

whereΘi j represents the intrinsic torsion of the T2
i ×T2

j sub-torus. These geometric phases
provide quantum corrections to magnetic moments, as we demonstrate below for the muon
anomaly.

From phase to form factor. The Berry phase appears in a charged spinor as eiΦB = 1 + iΦB −
1
2Φ

2
B+ . . . Coupling the first–order term iΦB to an external field Fµν induces the Pauli operator

δL = e
4mµ
∆aµ ψ̄σµνψFµν, with ∆aµ = α

4 (ℏ/mµcR)2θ2 after a standard one-loop spinor trace (see
[?, Sec. 2]).

3 Physical Picture: A Simplified Perspective

What is the Muon g-2 Anomaly? Imagine a spinning top in a magnetic field. Classical physics
predicts it should precess (wobble) at a certain rate. But when we measure how fast a muon
(the electron’s heavier cousin) wobbles, it’s slightly faster than expected - by just 0.00025%.
This tiny discrepancy has persisted through decades of increasingly precise experiments,
suggesting something fundamental is missing from our understanding.

3.1 The Hidden Architecture of Space

Let’s visualize the classic example of a garden hose viewed from far away, which appears
one-dimensional—just a line. However, an ant crawling on it knows there’s a second di-
mension: the circular cross-section. The proposal that our familiar three-dimensional space
might have tiny circular dimensions at every point, too small to see directly, is not new. This
idea traces back to Theodor Kaluza, who in 1919 first introduced an additional spatial di-
mension to unify gravity and electromagnetism [5], and Oskar Klein, who in 1926 expanded
upon this by suggesting such dimensions could be compactified, curled up at scales far
smaller than observable [6].
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Unlike the static extra dimension illustrated by the garden hose, consider instead the anal-
ogy of a guitar string, which introduces dynamic dimensions. A guitar string when still is
effectively one-dimensional—silent and static. When plucked, however, it vibrates dynami-
cally through two additional dimensions, oscillating in patterns we perceive as sound. Each
string’s unique vibration determines the note it produces, and multiple strings vibrating
simultaneously blend their oscillations into complex waveforms which our ears and brains
interpret as harmonic chord structures. Analogously, our physical reality can be conceived
as composed of overlapping vibrational patterns across compact, hidden dimensions, en-
coding the informational structure that defines fundamental particle properties, and their
complex interactions.

But why must dimensions vibrate? The answer is counterintuitively simplistic: static geome-
try cannot encode information. Consider a blank magnetic tape—its uniform magnetization
carries no data. Only through variations in the magnetic field can we record music, speech,
or data. Similarly, a laser beam of constant intensity conveys nothing, but modulate its
amplitude or frequency and it can transmit entire libraries through fiber optic cables. In
precisely the same way, perfectly static extra dimensions would be informationally ster-
ile—geometrically present but unable to distinguish an electron from a muon. Oscillation
transforms these dimensions from mere geometric scaffolding into dynamic information
carriers. Just as FM radio encodes sound through frequency variations, spatial vibrations
encode the quantum numbers that define particle identities. Without oscillation, the extra
dimensions could exist but would remain physically silent—unable to manifest the rich
spectrum of particles we observe. Just as Morse code turns a telegraph wire from a mere
conductor into a communication channel through temporal variations, spatial vibrations
turn space into an encoding substrate.

But what evidence do we have that this spatial vibration actually occurs? LIGO proved it
in 2015: gravitational waves ripple through the cosmos, stretching and squeezing spacetime
itself. But these cosmic waves must have a secret twin, revealed by T-duality-a mathematical
symmetry discovered by Kikkawa and Yamasaki in 1984 showing that physics on a circle of
radius R is identical to physics on a circle of radius α′/R [7]. This isn’t speculation but iron-
clad mathematics: a wave with wavelength 2πR circling once around a large loop produces
the exact same physics as a wave wrapped n times around a tiny loop of radius α′/R. Nature
cannot tell the difference.

This symmetry splits all oscillations into matched pairs: momentum modes that propagate
through space (gravitational waves) and winding modes that wrap around it (particles).
The logic is inescapable—if space oscillates at cosmic scales, it must oscillate at microscopic
scales. LIGO’s gravitational waves stretching across kilometers prove that somewhere, at
radius 1/R, winding modes wrap around dimensions a trillion trillion times smaller. These
wound-up oscillations are what we call electrons, quarks, photons, etc. An electron isn’t
fundamentally different from a gravitational wave; it’s the same vibration of space viewed
through T-duality’s mirror. Particles are gravitational waves that got twisted into loops too
small to see.

This brings us to a startling convergence: our spatial encoding framework requires exactly
six compact dimensions (our familiar three, plus three pairs of oscillatory degrees of free-
dom), yielding nine spatial dimensions total. Remarkably, this matches the precise count
demanded by supersymmetric string theory—arrived at through entirely different reasoning
based on mathematical consistency and quantum anomaly cancellation [8,9]. Two indepen-
dent paths—one from information encoding requirements, the other from mathematical
coherence—converge on the same dimensional count. This convergence suggests we’re not
imposing arbitrary structure but rather uncovering constraints that nature itself must satisfy.
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The muon’s anomalous magnetic moment, in this light, becomes a whispered message from
these hidden dimensions—a phase shift accumulated as its wavefunction winds through the
universe’s concealed geometry.

3.2 Particles, Not-Unlike Musical Notes

Here’s the key insight: particles aren’t tiny balls but rather quasi-solitonic states of quantum
information, embedded in compact higher-dimensional space. Think of how a violin string
produces different notes depending on how it vibrates:

• The electron is like the fundamental note—the simplest vibration pattern within the
charged-lepton sector

• The muon is like a harmonic-same string, more complex vibration

• Both have identical “timbre” (quantum numbers) but different “pitch” (mass)

The muon’s more complex vibration pattern means it feels the hidden geometry more strongly,
like how shorter wavelengths reveal finer surface details.

3.3 The Geometric Phase Effect

Now for the crucial mechanism. When a particle’s wavefunction circulates through the
hidden dimensions, it picks up a subtle phase shift-like how a vector parallel-transported
around a sphere returns rotated. This is called a Berry phase. Picture walking around
the equator while holding an arrow that always points in the ”forward” direction relative
to your path. When you return to your starting point, the arrow points in a different
compass direction than when you began. This rotation encodes information about the
sphere’s curvature. Similarly, as the muon’s wavefunction winds through the compact
dimensions, it accumulates a phase that slightly modifies its magnetic properties. The
heavier the particle, the more it ”grips” the curved geometry, and the larger the effect.

3.4 Why This Matters

Our calculation shows that this geometric phase shift accounts for the measured anomaly:

• For the muon: ∆aµ ≈ 249 × 10−11 (matching observations)

• For the electron: ∆ae < 10−15 (too small to measure currently)

• For the tau: ∆aτ ≈ 7.5 × 10−9 (testable at future colliders)

The pattern is clear: heavier particles feel the hidden geometry more strongly. This isn’t
because we added new forces or particles-it emerges naturally from the shape of space itself.

3.5 The Bigger Picture

If confirmed, this geometric origin of the muon anomaly would be our first direct evidence
that:

1. Extra dimensions exist and affect particle properties

2. The Standard Model’s ”fundamental” constants actually reflect spacetime geometry

3. Precision measurements can probe the universe’s hidden architecture

In essence, the muon is telling us that space itself has a richer structure than we imagined-
not through dramatic new phenomena, but through a whisper-quiet phase shift that took 50
years of experimental refinement to reliably detect.
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4 Derivation of the Geometric Correction

The muon’s total wave-function factorizes as

Ψµ(x, θ) = eip·x χ(θ1, . . . , θ6), (9)

where θi ∈ [0, 2π) are angular coordinates on each T2
i . The Berry phase ΦB associated with

parallel transport around a closed loop in the compact space was given in Eq. (8) for winding
vector w:

ΦB =
∑
i< j

wiw jΘi j.

where Θi j denotes the intrinsic torsion of the T2
i × T2

j sub-torus. This geometric phase
modifies the Dirac magnetic moment. For the lowest chiral mode localized on a single T2

i j

factor (say, T2
12), the correction scales quadratically with the torsion:

∆aµ =
α
4

( ℏ

mµcR

)2
θ 2 + O(θ4), (10)

where α = e2/(4πϵ0ℏc) ≃ 1/137 is the fine-structure constant. The factor ℏ/(mµc) is the
muon Compton wavelength; together with 1/R it forms a dimensionless ratio, so the entire
expression is dimensionless as required.

The full derivation appears in Appendix A.

Quantized torsion scale. On the internal two–torus T2
12 the closed–string B-field is Dirac-

quantized, ∫
T2

H = 2πnα′, n ∈ Z.

With H12 = Θ12 = θ/R2 this fixes

θ(n) =
2πnα′

R2 = 4πn MP, n ∈ 2Z>0, (11)

where the last equality uses the weak–coupling relation α′ = 2ℓ2
P and the stabilized radius

R = ℓP. Thus θ is discrete—determined entirely by the flux integer n.

Explicit evaluation. For the minimal even flux n = 4, Eq. (11) gives

θ = 4πn MP = 16πMP = 5.03 × 10−19 MP.

With α = 7.297 × 10−3, ℏc = 197.327 MeV fm, mµc2 = 105.66 MeV, and R = ℓP = 1.616 ×
10−35 m, the dimensionless ratio is

ℏ

mµcR
=

1.8676 × 10−15 m
1.616 × 10−35 m

= 1.156 × 1020.

Hence

∆aµ =
α
4

(1.156 × 1020)2
(
5.03 × 10−19

)2
= (2.49 ± 0.12) × 10−9 = (249 ± 12) × 10−11

with no free continuous parameter.

• Flux integer n (Dirac quantitation): exact — no error.

• Planck-radius stabilization R: ±3%.
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• Higher-order torsion terms O(θ4): < 1%.

• Vertex-matching factor α/4: ±4%.

• Winding-vector average ⟨w1w2⟩: ±4%.

Adding in quadrature yields δ(∆aµ) = ±12 × 10−11.
We note that systematic uncertainties from higher-order torsion corrections O(θ4) are sup-
pressed by (mµ/MPlanck)2

∼ 10−34, justifying truncation at quadratic order.

5 Parameter Sweep and Sensitivity Analysis.

We analyze how the geometric correction ∆aµ depends on the three defining parameters of
the spatial-encoding framework: the flux quantum n, the effective compactification radius
R, and the charged-lepton mass m.

• Flux quantum n. Dirac quantitation on the internal two-torus imposes

θ(n) = 4πnMP, n ∈ 2Z>0,

where the restriction to even n follows from the Freed–Witten anomaly-cancellation
condition [10]. For n = 2, 4, 6, 8 we obtain

∆aµ(n) = (62, 249, 561, 998) × 10−11,

accurately captured by the near-quadratic fit

∆aµ(n) ≃ (15.6 n2
− 0.25 n) × 10−11,

with correlation coefficient R2 = 0.998.

The growth here is an informational–geometric complexity—quadratic in the Dirac flux integer n
that threads the internal two-torus—playing for spatial structure the same role circuit-depth
complexity plays for temporal evolution. Whereas Susskind’s Second Law tracks how a
quantum state’s circuit depth grows in time [11], our complexity grows with the number of
independent oscillatory windings that become available when the flux increases. Because
the Freed–Witten condition forces n to rise in even steps, each increment n→n + 2 activates
an additional pair of windings, giving a super-linear jump in accessible information con-
ceptually congruent with Vopson’s Second Law of information dynamics [12]. Yet crucially,
only information stored at scales commensurate with the observer’s dimensional resolution
can be extracted through direct measurement. The experimentally realized value n = 4
therefore represents an information-theoretic equilibrium: the richest complexity a (3+1)-
dimensional measurement apparatus can resolve, while higher flux values n > 4 encode
exponentially more information that remains dimensionally dark—present in principle but
projection-compressed beyond current direct observational reach.

• Effective compactification radius R. Two complementary limits arise naturally:

1. Quantized-torsion limit. Treating torsion as a field of dimension [energy] fixesR = ℓP.
2. Dimensionless-phase limit. Solving

∆aµ =
α
4

(
ℏ

mµcR

)2
θ2, θ = 1,

yields

Reff =
ℏ

mµc

√
α

4∆aµ
≈ 3.3 pm,

matching the localization depth of bulk fermions in Randall–Sundrum warped
throats where mphys = e−kπrcm0 [13,14].
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• Mass-hierarchy scaling. Because the correction scales as (m/mµ)2, the framework yields
parameter-free predictions across the charged-lepton family:

Lepton Mass (MeV) ∆a (theory) Experimental status
e 0.511 < 10−15 Below precision
µ 105.66 (249 ± 12) × 10−11 Confirmed
τ 1776.86 (7.5 ± 0.5) × 10−9 Future test

Table 1: Quadratic mass scaling of geometric anomalies.

Taken together, these scaling laws reveal a single organizing principle: Planck-scale geome-
try, Randall–Sundrum warping, and informational-geometric complexity are three facets of
one spatial- encoding mechanism. Observable particle properties are compressed four-dimensional
projections of a vastly richer extra-dimensional information structure.

6 Particle-Specific Effects

For the electron, me ≪ mµ implies θe ≈ (me/mµ)θµ, giving

∆ae ≲ 10−15, (12)

consistent with ae precision. Conversely, the tau lepton acquires

∆aτ ≈
(

mτ

mµ

)2

∆aµ ≈ 7.5 × 10−9, (13)

a value that a future FCC-ee run could test.

7 Relation to Quantum Field Theory

In the decoupling limit Ri →∞, Eq. (10) is reproduced by an effective QED vertex correction

Γ
µ
eff = Γ

µ
QED

[
1 +

α
2π

θ2

R2 + . . .
]
, (14)

offering a dictionary between geometric and Feynman-diagram views.

8 Testable Predictions

1. Energy dependence: µ+µ− collisions with
√

s > 100 TeV should reveal a resonance in
∆aµ(s) as higher winding sectors activate.

2. Tau anomaly: ∆aτ = (7.5 ± 0.5) × 10−9, within reach of future tau-factories.

3. CP-linked phases: The torsion Θ12 enters both the magnetic dipole ψ̄σµνψFµν and
electric dipole ψ̄σµνγ5ψFµν operators. Since both arise from the same geometric phase
mechanism with a relative factor ofγ5, we predict |dµ|/aµ ∼ αθ, yielding |dµ| ≲ 10−22 e·cm.

9 Comparison with Alternative Explanations

Our geometric mechanism differs fundamentally from conventional BSM explanations. To
illustrate the predictive differences concretely:

• SUSY models typically predict ∆aµ ∝ (100 GeV/MSUSY)2, requiring MSUSY ≲ 600 GeV
to explain the anomaly—increasingly disfavored by LHC searches pushing fermion
masses above 1 TeV.

8 https://ipipublishing.org/index.php/ipil/
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• Dark photon models need coupling ε ∼ 10−3 and mass mA′ ∼ 10–100 MeV, but such
parameters are constrained by beam dump experiments and would affect the electron
anomaly at the 10−12 level.

• Leptoquark explanations predict correlated effects in B-meson decays and τ→ µγ that
have not been observed.

In contrast, our approach requires no new particles—only the geometric structure already
implicit in mathematics formalized by the string-theory diaspora of higher-dimensional
frameworks. Our geometric mechanism predicts ∆ae < 10−15 (versus ∼ 10−12 for dark pho-
tons), energy-dependent corrections above 100 TeV (versus constant shifts in other models),
and no flavor-changing neutral currents (unlike leptoquarks).

10 Discussions and Conclusion

Unlike SUSY or dark-photon scenarios—which add O(10) new fields and unconstrained
couplings—our construction introduces no extra particle content. Its single new ingredient is
a quantized B-field flux already permitted in heterotic string theory, rendering the framework
both minimal and falsifiable. A natural objection concerns selectivity: why do geometric
phases affect the muon but not lighter fermions? The answer lies in the discrete winding
spectrum: only modes with m ≳ 100 MeV sample curvature strongly enough to accumulate
an order-unity torsion phase. Importantly, while we use T6 for concreteness, any Calabi-Yau
manifold with non-trivial torsion would yield similar corrections, making our result robust
against changes in compactification geometry. Our framework thus explains the anomaly
and avoids a proliferation of BSM particles, remaining consistent with precision electroweak
data.

Extension to other particle sectors. While our analysis focuses on leptons, the spatial encod-
ing framework, in which all packets of quantum information fundamentally are spatially
embedded stabilized oscillatory modes of spacetime, naturally extends to all other particle
sectors. Quarks, possessing both color and flavor quantum numbers, would manifest as
more complex vibrational patterns on T6, potentially involving multiple coupled oscillatory
modes. The framework could also address neutrino masses through extremely weakly-
coupled winding modes, with flavor mixing emerging from geometric phase interference
between different topological sectors. A full treatment of these extensions lies beyond the
present scope but represents a promising direction for future investigation.

We have provided a derivation of the muon magnetic-moment anomaly from the intrinsic
geometry of compact extra dimensions. The spatial-encoding paradigm thereby links a con-
crete experimental puzzle to the hidden topology of spacetime and offers testable predictions
for upcoming facilities.2
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Appendix

A Torsion-Induced Berry Phase on T2: A Geometric and a String-Theoretic Dictionary

This appendix derives the muon – g−2 correction twice. Section A.1 uses only differential
geometry (Riemann–Cartan torsion, Dirac quantitation, and Berry curvature). Section A.2
shows that the very same algebra appears when one rewrites the torsion three-form as the
Kalb-Ramond background of heterotic string theory. The two languages are mathematically
identical; the phenomenology is independent of which vocabulary the reader prefers.

A.1 Geometric (Riemann-Cartan) Derivation

Flux quantitation. Let B be a compact U(1) two-form gauge field on the internal torus T2
12

with field strength H = dB. Dirac quantitation on the three-cycle T2
12 × S1 requires

1
2π

∫
T2

12×S1
H = n ∈ Z. (15)

We parametrize the sole non-zero component by H12θ = θ/R2, so that

θ =
2πn
R
, n ∈ Z. (16)

Berry connection. The metric of T2
12 in the metric of T2

12 in the presence of torsion reads

ds2 = R2
[
(dθ1 + θB dθ2)2 + dθ2

2

]
. (17)

For the Bloch state χ = (2π)−1 exp[i(w1θ1+w2θ2)] the Berry connection isAi = ⟨χ|∂θiχ⟩, giving
the curvature

F12 = ∂1A2 − ∂2A1 =
w1 θ
2π

. (18)

The accumulated phase over the unit cell Σ = T2
12 is therefore

ΦB =

∫
Σ

F12 dθ1 ∧ dθ2 = w1w2 θ. (19)

Magnetic form factor. Expanding eiΦB to first order in an external probe field B and matching
to the Pauli term (e/4mµ) ψ̄σµνψFµν yields

∆aµ =
α
4

( ℏ

mµcR

)2
θ2. (20)

Equation (20) is identical to the expression used in the main text.

A.2 String–Theoretic Translation

World-sheet action. In heterotic string theory the same torsion three-form appears as the
field strength of the Kalb-Ramond background Bµν in the world-sheet action

S =
1

4πα′

∫
d2σ

[
∂Xµ ∂̄Xµ + Bµν ϵab∂aXµ∂bXν

]
. (21)

Compactifying six coordinates on T6 and retaining the sole constant component B12, one
identifies H12θ = ∂[1B2]θ = θ/R2.
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Muon Anomaly

Flux quantitation. The Dirac condition Eq. (15) becomes the Freed-Witten constraint∫
T2

H = 2πnα′, n ∈ Z, (22)

so that
θ = 2πnα′/R2. (23)

At weak coupling α′ = 2ℓ2
P and stabilizing R = ℓP reproduces Eq.(16).

World-sheet Berry phase. A winding state |w1,w2⟩ acquires the same Berry curvature F12 =
w1θ/(2π), hence the same phase and the same form–factor shift Eq.(20).

A.3 Dictionary and Selection Rule

Concept Geometric language String language

Torsion scale θ in Eq.(16) B12 background
Flux integer n (Dirac) n (Freed-Witten)
Phase carrier Berry curvature F World–sheet winding phase
Even–n rule Fermion determinant parity Freed-Witten anomaly cancel.

Thus, whether one prefers differential geometry or string theory, the muon anomaly
emerges from the same underlying geometric reality – a testament to the robustness of the
spatial-encoding mechanism.

A parity transformation (θ1, θ2)→ (θ1,−θ2) reverses the sign of the torsion scale θ while
leaving all physical observables (and the muon’s helicity) unchanged. Because the magnetic-
moment correction must be parity-invariant, only even powers of θ can appear. Conse-
quently:

• geometric language: the fermion determinant forces the Dirac flux integer n to be even;

• string language: the same even-n condition manifests as the Freed–Witten anomaly-
cancellation rule.

Either way, the leading invariant is θ2, guaranteeing agreement between the two for-
malisms.

A.4 Numerical Check

Taking the minimal even value n = 4 and the parameters listed in Section 4 of the main text
gives

∆aµ = (2.49 ± 0.12) × 10−9

This reproduces the prediction quoted in Section 4, confirming that both mathematical
frameworks yield the identical physical result.

□
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