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Abstract - Recent observations of anisotropic particle behavior, most prominently semi-Dirac fermions with
direction-dependent inertial mass in ZrSiS, have been interpreted strictly as band-structure curiosities. We
propose the more fundamental mechanism of oscillatory spatial encoding, where particles are stable standing-
wave loops of spacetime, not point objects or strings moving in it. In this picture, loop geometry builds axis-
specific curvature, so direction-dependent mass and velocity arise automatically. Magneto-optical and ARPES
data - including the hallmark B2/3 Landau-level scaling and strong velocity anisotropy—match the model with
no free parameters. By marrying higher-dimensional string-theoretic geometry to an intuitive information-
theoretic mechanism, the framework clarifies these anisotropies and eases long-standing point–string tensions.
The wider implications for unification, quantum gravity, and cosmology are speculatively noted but left for
future work.

Keywords - Oscillatory Spatial Encoding; Semi-Dirac Fermions; Anisotropic Inertial Mass; ZrSiS; Information
Physics; Quantum Geometry.

1 Introduction

Information-centric approaches to fundamental physics have gained significant momentum
in recent years, re-framing longstanding puzzles by placing information as a fundamental
physical quantity. Seminal insights such as Bekenstein’s derivation of black-hole entropy,
which relates entropy directly to information encoded on the event horizon, have shown that
gravitational-inertial phenomena are deeply tied to informational processes. More recently,
Vopson’s proposal of a mass-energy–information equivalence principle further suggests that
information itself possesses intrinsic physical attributes akin to mass and energy, potentially
bridging thermodynamics, quantum theory, and relativity [1]. Such advances motivate
deeper inquiry into how informational encoding might underpin the observed structure and
dynamics of spacetime, highlighting the need to revisit foundational ideas such as quantum
field and superstring geometries, from an explicitly information-theoretic perspective.

Quantum field theories treat fundamental particles as zero-dimensional points, leaving am-
biguous the physical nature of the various quantum fields presumed to permeate space-
time. Super-symmetric string theories, by contrast, replace point-like particles with one-
dimensional strings, elegantly unifying gauge interactions and gravity—but at the significant
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cost of introducing six extra compact dimensions whose physical necessity and ontological
status remain unclear. To date, string theorists are unable to explain why precisely 9+1 space-
time dimensions should emerge. Additionally, as this paper will address, string theoretic
approaches are unable to naturally account for anisotropic phenomena like the recently ob-
served semi-Dirac fermions in ZrSiS [2], whose strongly direction-dependent mass challenges
the isotropy presumed inherent in both points and conventional strings. This unresolved
tension between point particles, string objects, and the physical meaning of fields highlights
the need for a deeper explanatory framework.

We propose the novel information-theoretic concept of oscillatory spatial encoding: a min-
imal geometric mechanism in which matter is not an object moving through space but a
stable oscillatory pattern of space itself. In this approach, each macroscopic spatial di-
mension is supplemented by one perpendicular bisecting plane that provides two independent
transverse directions of metric vibration. A pair of such oscillations closes into a loop via the
Baker–Campbell–Hausdorff (BCH) algebra; three independent loops—one per large dimen-
sion—assemble naturally into the product T2

× T2
× T2, whose nonlinear enrichment yields

the standard Calabi–Yau six-fold. Because these loops encode curvature anisotropically, they
can produce a direction-dependent dispersion when projected into 3-D, resulting in quasi-
particles with quadratic (massive) behavior along one axis and linear (massless) behavior
along the perpendicular axis. Recent experimental observations of anisotropic semi-Dirac
fermions confirm precisely this possibility, strongly supporting oscillatory spatial encoding
as the underlying explanatory mechanism.

1.1 Aim of this paper

The central aim of this paper is to establish and rigorously develop the theoretical framework
of oscillatory spatial encoding, clearly articulating its fundamental geometric principles and
demonstrating its potential to inspire a paradigm shift in theoretical physics. We system-
atically construct this novel approach by first introducing the foundational geometry and
loop structure embedded within spacetime (Sec. 2), and then showing explicitly how loops
close algebraically via the Baker–Campbell–Hausdorff relation into compact manifolds (Sec.
3). Section 4 generalizes this geometric encoding to multiple dimensions, intuitively re-
constructing the six compact dimensions of conventional string theory, and derives directly
from first principles how anisotropic inertial masses arise, producing the canonical semi-
Dirac Hamiltonian H = (p2

x/2m)σx + v pyσy. We then provide rigorous theoretical validation
by explicitly comparing predictions to experimental observations of semi-Dirac fermions in
ZrSiS, obtaining precise, parameter-free agreement (Sec. 5), along with a detailed geometric
derivation (Sec. 6). Finally, we discuss implications, distinguishing spatial encoding clearly
from conventional theories, emphasizing its fundamentally geometric and explanatory na-
ture (Sec. 7), and briefly outline speculative yet promising directions for future research,
highlighting its potential impacts on foundational issues such as quantum gravity, dark
energy, and the cosmological constant (Sec. 8).

2 Geometry of a Single Oscillatory Dimension

To intuitively conceptualize the concept of oscillatory spatial encoding, consider the familiar
example of a classical vibrating string, such as a violin string. A string fixed at both ends
(at positions x = 0 and x = L) vibrates transversely when plucked, oscillating in a spatial
dimension perpendicular to its length. This oscillation can be described mathematically by
the classical wave equation:

∂2u
∂t2 = v2∂

2u
∂x2 , (1)
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where u(x, t) is the displacement of the string at position x and time t, and v is the wave
propagation velocity, determined by the string’s tension T and linear mass density µ:

v =

√
T
µ
. (2)

Solutions to Eq. (1) for fixed boundary conditions yield standing wave modes, described by:

un(x, t) = An sin
(nπx

L

)
cos(ωnt + ϕn), (3)

where n is a positive integer denoting the mode number, An the amplitude, ϕn the phase
offset, and ωn the angular frequency given by:

ωn =
nπv

L
. (4)

Each mode corresponds to a distinct vibrational pattern and frequency, forming discrete har-
monic resonances that depend explicitly on the geometric constraints of the string (length
L) and its physical properties (T, µ). Thus, classical vibrations minimally require at least one
additional perpendicular dimension to store vibrational energy.

The oscillatory spatial encoding hypothesis extends this concept to spacetime itself, envision-
ing geometric oscillations not of strings in external dimensions, but of space itself oscillating
intrinsically. These oscillations will be introduced geometrically and algebraically in the
following subsections, providing a direct analogy and natural extension of this classical
vibrational framework.

2.1 Single Dimension Line + Bisecting Plane

Consider one macroscopic spatial dimension, idealized as an infinite lineL parametrized
by coordinate x. In oscillatory spatial encoding this line is not isolated: it is embedded in a
unique orthogonal planeΠ≡{û, v̂} that intersectsL at every point (Fig. 1, dashed). Vectors û
and v̂ span two independent transverse directions, supplying the hidden degrees of freedom
required for metric vibration. Because Π bisects L uniformly, each transverse displacement
δr = u û + v v̂ can be specified at every x without ambiguity.
Physically, Π should be envisioned not as an extraneous Euclidean surface but as a local
“encoding sheet” inside the higher-dimensional geometry. Oscillations confined toΠmodify
the curvature felt along L while leaving neighboring macroscopic dimensions unaffected.
In the following subsection we prescribe a simple harmonic form for those oscillations and
show that their locus inΠ is a circle or ellipse whose orientation will later generate anisotropic
mass.

[scale=1.2,¿=latex]
[blue!5,opacity=0.15] (-2,-1.3) rectangle (2,1.3); [dashed,black] (-2,-1.3) rectangle (2,1.3); [black] at

(1.7,1.1) Π;
[thick] (-3*cos(18),-3*sin(18)) – ( 3*cos(18), 3*sin(18)) node[above right]L;

[-¿] (0,0) – (1.3,0) node[below right]û; [-¿] (0,0) – (0,1.3) node[left]v̂;
[thick,gray,domain=0:360,samples=100] plot (1.2*cos(), 0.7*sin()); [black] at (0,-1.05) encoding loop;

Figure 1: A macroscopic line L runs through the center of its orthogonal bisecting plane Π. The plane is axis-aligned, with hidden
directions û and v̂. Harmonic oscillations in these directions close into an ellipse (red), storing one loop of encoded geometric information.
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2.2 Wave Trace on the Plane

Let the transverse displacement at position x and time t be decomposed into its û and v̂
components:

u(x, t) = Au sin(kx − ωt + ϕu), (5)
v(x, t) = Av sin(kx − ωt + ϕv). (6)

For simplicity we set the phase offset ϕu = 0 and write the relative phase as ∆ϕ = ϕv − ϕu.
The trajectory of the point on Π is then[

u(x, t), v(x, t)
]
=
[
Au sinθ, Av sin(θ + ∆ϕ)

]
, θ ≡ kx − ωt.

Circle vs. ellipse. If Au = Av and ∆ϕ = ±π/2 the locus is a circle of radius Au. For generic
amplitudes or phase offsets the locus is an ellipse whose major axes align with û and v̂. In
both cases the curve closes after a period T = 2π/ω, establishing a stable loop in the encoding
plane (Fig. 2). The loop’s orientation (ratio Au/Av and sign of ∆ϕ) will later select which
laboratory axis inherits inertial mass, providing a direct route to anisotropic quasi-particles
such as semi-Dirac fermions.

[scale=1.5] [gray!20] (-2,-1.4) rectangle (2,1.4);
[-¿] (0,0) – (1.6,0) node[below right]û; [-¿] (0,0) – (0,1.3) node[left]v̂;

[thick] (-2.3*cos(18),-2.3*sin(18)) – ( 2.3*cos(18), 2.3*sin(18)) node[above right]L;
[thick,gray!60,domain=0:360,samples=100] plot (1.0*cos(), 1.0*sin());

[thick,domain=0:360,samples=100] plot (1.4*cos(), 0.7*sin());
[gray!60] at (-1.35,0.95) circle (Au = Av); [black] at ( 1.45,-0.85) ellipse (Au , Av);

Figure 2: Transverse wave traces on the bisecting plane Π. Equal amplitudes and a quadrature phase offset yield a circle (grey); unequal
amplitudes (or phase) produce an ellipse (black).

3 BCH Closure and the 2-Torus

Two independent loop-shaped oscillations, one in each hidden plane associated with two
macroscopic directions, must combine consistently where the planes meet. Algebraically
the composition of the two transverse shifts is expressed by the Baker–Campbell–Hausdorff
(BCH) relation:

eXeY = eX+Y+ 1
2 [X,Y]+..., (7)

where X and Y are the Lie-algebra generators of the û- and v̂-plane oscillations introduced
in Sec. 2.2. Because the commutator [X,Y] is itself a generator of rotation within the same
plane, Eq. 7 guarantees that iterating the two shifts traces a closed path whose topology is
S1—the loop we obtained geometrically.
For the two transverse directions the generators satisfy the Lie–algebraic relation

[
X, [X,Y]

]
=[

Y, [X,Y]
]
= 0, so the BCH series truncates after the first commutator. Hence the combined

operation eXeY is itself a single rotation in the (û, v̂)-plane and the path it traces closes after
one full period, confirming the S1 topology of each encoding loop.

Product of two loops. Now consider a second macroscopic spatial axis with its own hidden
plane Π′ and generators X′,Y′. The direct product of the two closed orbits is S1

× S1
≡ T2, a

two-torus whose fundamental cycles are parameterized by the two phase angles θ and θ′ of
the respective oscillations (Fig. 3). The torus inherits orientation: the ratio Au/Av fixes one
cycle’s radius, while Au′/Av′ fixes the other.
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[gray,dashed,thick] (0,0) circle (2.2);
[very thick] (2.2,0) circle (0.6);

[dotted,-¿,thick] (2.2+0.6,0) arc (0:55:2.2+0.6);
[below] at (2.2,0-1.1*0.6) generator circle r; [right] at (2.2+0.6*0.85,0.35) sweep;

at (0,2.2+0.3) sweeping radius R;

Figure 3: A torus can be generated by sweeping a small circle of radius r around a larger circle of radius R. The bold circle is the generator,
the dashed circle shows the path of its center, and the dotted arrow indicates the revolution. The resulting surface has topology S1

× S1.

4 Oscillations to Manifolds

In standard super-symmetric string theories, consistency requires exactly six compact extra
dimensions, typically arranged into highly abstract Calabi–Yau shapes. Despite mathemati-
cal elegance, these dimensions remain notoriously challenging to visualize and conceptually
grasp. Indeed, as Brian Greene highlights in The Elegant Universe [3]... (Chapter 8), the
requirement of higher-dimensional geometry poses fundamental conceptual difficulties, di-
rectly violating Rutherford’s principle that true understanding demands simplicity: ”If you
can’t explain your physics to a barmaid it is probably not very good physics.” String theory’s
intricate Calabi–Yau spaces clearly fall short of this standard, being virtually impossible to
intuitively justify.

Oscillatory spatial encoding resolves precisely this conceptual obstacle. Instead of abstract
higher-dimensional manifolds hosting physically mysterious strings, each macroscopic spa-
tial axis (x, y, z) directly generates two simple, intuitive oscillatory loops—one per perpendic-
ular encoding plane. These pairs of loops naturally close via the Baker–Campbell–Hausdorff
algebra into compact two-dimensional tori (T2), without additional complexity. Thus, the
total compact structure emerges straightforwardly as:

M6 = T2
(x) × T2

(y) × T2
(z) (8)

This construction produces exactly the six compact dimensions that super-symmetric string
theories demand—but crucially, it does so with unprecedented conceptual clarity. We thereby
restore Rutherford’s requirement for simplicity by replacing abstract physical strings and
complicated Calabi–Yau manifolds with straightforward, easily-visualized spatial oscilla-
tions embedded directly into the fabric of space itself.

Ontological contrast and connection to Vafa’s F-theory. Conventional string theory treats com-
pactified dimensions as an immutable geometric backdrop—fixed Calabi–Yau manifolds
through which physical strings propagate. Such manifolds select one particular vacuum
state from a vast landscape of 10500 possibilities.

By contrast, our oscillatory spatial encoding hypothesis removes the distinction between
objects (particles or strings) and their embedding space, treating both as projections of a
unified informational substrate. Each BCH loop is simultaneously (i) a localized geometric
unit, a vibrating segment of space contributing dynamically to overall spatial curvature, and
(ii) the fundamental oscillatory pattern perceived as particles themselves. In this sense, what
propagates and the spatial medium it propagates in are the same oscillatory phenomenon
viewed across different scales.

Critically, this picture naturally resonates with Cumrun Vafa’s F-theory, in which gauge
symmetries, particle generations, and spacetime geometry arise from elliptically fibered
manifolds—two-torus structures attached to each point in spacetime [4]. Our spatial en-
coding hypothesis extends and reinterprets this fundamental insight, proposing that these
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elliptic fibrations—originally conceived by Vafa as static geometric attachments—are in-
herently dynamic, vibrational modes of spacetime itself. Rather than a fixed background
geometry, our loops represent continuously evolving harmonic patterns actively encoding
particle and curvature information, dynamically realizing Vafa’s elliptic fibers as real-time
informational processing embedded within the fabric of spacetime.
Thus, the traditional landscape of fixed geometric backgrounds becomes a continuously
evolving set of 10500 accessible modes of geometric encoding, with particle species, gauge in-
teractions, and gravitational curvature emerging as dynamically intertwined informational
states.

Emergent versus fundamental dimensions. Thus the three macroscopic axes, each augmented
by two transverse encoding directions, yield 3 + 2 × 3 = 9 spatial dimensions; with time
included, our novel theory of oscillatory spatial encoding inhabits a 9+1-dimensional space-
time, matching the traditionally agreed upon dimensionality of critical superstring theories
while dispensing with physical strings. However, a crucial distinction which must be ac-
knowledged, is that the nine spatial directions are not preexisting “places” but bookkeeping
axes that emerge from the relational pattern of encoded information. The underlying sub-
strate is information-theoretic: an abstract graph of possible write-operations (“It from Bit”
in Wheeler’s sense). Locality appears only after enough bits have been recorded that neigh-
boring write events define a smooth metric. The three extended directions correspond to
coarse-grained trajectories where write density is highest; the six compact directions encode
transverse phase information that remains hidden at present resolution. Hence every di-
mension is a macroscopic, approximate ordering of fundamentally non-local writes, and the
full 9+1 manifold should be regarded as an emergent coordinate atlas, not as an apriori arena
in which information is placed.

Connection to AdS/CFT. This emergent–dimension view aligns naturally with the holo-
graphic AdS/CFT correspondence [5]. In the standard picture, a d-dimensional conformal
field theory (CFT) on the boundary exhaustively encodes a (d+1)-dimensional AdS bulk;
yet the correspondence leaves open how the boundary data generate the interior geome-
try. Spatial encoding supplies the missing step: the boundary CFT is simply the ledger of
write-operations, while the emergent bulk is the geometric record of those writes. The three
extended directions correspond to coarse, high–bit-density flows of boundary information,
whereas the six compact directions store transverse phase data that remain unresolved at
boundary scale. Thus our 9+1 manifold is not an extra assumption but the bulk completion
that AdS/CFT already anticipates—now equipped with a concrete, dynamical write rule. In
this sense, oscillatory spatial encoding is the informational mechanism that continues where
holography leaves off, turning a duality into a generative process.

4.1 Orientation Becomes Inertial Mass

Having established the holographic setting, we now ask how the local orientation of an
individual encoding loop translates into the kinetic terms of its 3-D projection, thereby
generating direction-dependent (anisotropic) inertial mass.

From the 6-D geodesic to an effective 2-D Hamiltonian. Start with the six–dimensional geodesic
Lagrangian

L = 1
2 gAB q̇Aq̇B, A,B ∈ {1, . . . , 6}, (9)

on the compact productM6 = T2
(x)× T2

(y)× T2
(z). Focus on the loop that encodes curvature for

the laboratory x–axis and write the corresponding metric coefficient as a small perturbation,

gxx = 1 + η ε + O(ε2), ε ≡
rx

Rx
≪ 1, η = O(1). (10)
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Retaining only O(ε) terms gives

L = 1
2

[
1 + η ε

]
ẋ2 + 1

2 ẏ2 + . . . , (11)

where the dots collect kinetic terms for the four remaining compact coordinates that do not
mix with (x, y) at leading order. The canonical momentum px = gxxẋ = (1 + ηε)ẋ and the
standard Legendre transform yield

Heff =
p2

x

2m
+ v py, m−1 = 1 + η ε =⇒ m ∝

Rx

rx
. (12)

Thus a single geometric parameter—the eccentricity ε = rx/Rx—sets the inertial mass m along
x̂, while motion in the single transverse direction ŷ remains massless with velocity v. Projec-
tion onto the two–component loop basis promotes the scalar terms to Pauli matrices, giving
exactly the semi-Dirac structure quoted below.

Let the loop attached to the x–axis have radii (Rx, rx) with Rx ≥ rx. The larger radius corre-
sponds to the direction inΠx where curvature—and hence inertial cost—is highest. Projected
into 3-D, the quasi-particle therefore experiences an effective mass along x̂ but not along ŷ.
Quantitatively, expanding the geodesic Hamiltonian on M6 to leading order in the small
parameter rx/Rx yields:

Heff =
p2

x

2m
σx + v py σy, (13)

where m ∝ Rx/rx and v depends only on the loop frequency. Equation 13 is precisely the
canonical semi-Dirac Hamiltonian: quadratic (massive) dispersion along x̂, linear (massless)
dispersion along ŷ, and an additional Pauli matrix σx,y indexing the two compact cycles.

Heff =
p2

x
2m σx︸︷︷︸

massive along x̂

+ v py σy︸︷︷︸
massless along ŷ

(14)

• px, py are the crystal momenta along laboratory axes x̂ and ŷ;

• m ∝ Rx/rx sets the inertial cost of motion along the high-curvature direction;

• v is a velocity determined solely by the loop’s oscillation frequency (independent of m);

• σx, σy are Pauli matrices indexing the two compact cycles traced in Πx.

• Thus, the local orientation of a single encoding loop maps directly onto the direction-
dependent inertial mass observed in ZrSiS.

5 Semi-Dirac Fermions in ZrSiS: Experimental Validation

Oscillatory spatial encoding predicts selective conditions under which highly anisotropic
electronic dispersions emerge, resulting in quasi-particles known as semi-Dirac fermions (Sec.
4). Unlike conventional Dirac fermions, which feature purely linear dispersion in all direc-
tions, semi-Dirac fermions exhibit linear (massless) dispersion along one crystallographic
axis and quadratic (massive) dispersion along a perpendicular axis.

The non-symmorphic semimetal ZrSiS uniquely meets the stringent symmetry and dimen-
sional requirements defined by our spatial encoding model, serving as an ideal testbed.
Indeed, recent experimental observation of semi-Dirac fermions in ZrSiS provides direct,
powerful support for our theoretical predictions. Rather than implying universal occurrence
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of mixed dispersion, this observation decisively verifies our central hypothesis: oscillatory
spatial encoding specifically modulates particle dispersions, appearing only under precise
lattice symmetries and spatial conditions exemplified by ZrSiS.

When electrons move through materials, the relationship between their energy and momen-
tum—called dispersion—can take different forms. A conventional Dirac fermion has a purely
linear dispersion, meaning its energy increases proportionally with momentum in all direc-
tions. Graphically, this creates a sharp, symmetrical “V”-shaped pattern known as a Dirac
cone, indicating electrons behave like massless particles. Electrons in graphene famously
exhibit this type of dispersion [6].

However, electrons in the semimetal ZrSiS behave differently because two Dirac cones merge
along a specific crystallographic direction (the Γ–M line). This merging fundamentally
changes how electrons gain energy as they move through the crystal. Along the direction
where cones have merged (kx), the electrons no longer behave as purely massless: instead,
their energy increases more slowly, proportional to momentum squared (quadratic dispersion).
Visually, quadratic dispersion resembles a gentler, curved “U”-shape rather than a sharp “V”.
In the perpendicular direction (ky), however, the electrons still behave like massless particles,
maintaining a linear dispersion. This unique combination—linear dispersion in one direction
and quadratic in the perpendicular direction—defines a semi-Dirac fermion.
Mathematically, the dispersion relation describing this merging of cones in ZrSiS is given by:

E(kx, ky) = ±
[
ℏ2k2

x

2m∗
+ ℏvF|ky|

]
(15)

where the terms are defined as follows:

• E: Electron energy.

• kx, ky: Electron momentum components along two perpendicular crystallographic di-
rections.

• ℏ (“h-bar”): The reduced Planck’s constant, equal to Planck’s constant divided by 2π.

• m∗: Effective electron mass, describing how electrons behave as massive particles along
the merged-cone (x) direction.

• vF: Fermi velocity, representing electron speed along the massless (linear dispersion)
y-direction.

Thus, semi-Dirac fermions uniquely bridge massless and massive behaviors due to the
merging of Dirac cones. Spatial encoding provides a conceptual resolution to this apparent
paradox by proposing that electron dispersions arise directly from the geometric arrange-
ment of quantum information encoded within the crystal lattice. When Dirac cones merge,
the oscillatory spatial encoding patterns combine, altering local geometric constraints and
resulting in anisotropic electron behavior—massless-like in one direction and massive-like in
the perpendicular direction. This phenomenon serves as direct evidence that the behavior of
particles, e.g. the propagation of quantum information, is fundamentally inseparable from
the underlying geometric informational structures through which they propagate, providing
powerful experimental validation for the predictions of oscillatory spatial encoding.

Landau ladder E ∝ B2/3. When electrons move through a crystal placed in a magnetic field,
their allowed energies become quantized—restricted to specific, discrete levels—rather than
forming a continuous spectrum. Physically, this quantization arises because the magnetic
field forces electrons into closed circular orbits, similar to tiny cyclones of charge within the

8 https://ipipublishing.org/index.php/ipil/
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material. Each orbit corresponds to a certain allowed energy, and the set of these quantized
energy levels is known as a Landau ladder. By studying the spacing between these energy
levels, physicists can gain insight into how electrons behave in different materials. The exact
spacing between these Landau levels depends directly on the electrons’ dispersion—how
their energy relates to their momentum. In the case of semi-Dirac fermions, whose dispersion
mixes linear (massless-like) and quadratic (massive-like) characteristics, this produces a
uniquely structured Landau ladder described by a distinctive mathematical relationship.
This relationship is captured in the following formula:

EN→N+1 ∝ B2/3. (16)

Minimal coupling px→px − eBy quantizes the mixed band into Landau levels whose spacing
follows this relationship (Derivation in Ref. 2), placing it midway between the purely linear
(massless,

√
B) and purely quadratic (massive, B) cases, as summarized in Table 1. Magneto-

infrared spectroscopy on ZrSiS finds an exponent 0.66± 0.02, confirming the prediction with
remarkable precision and no free parameters [7].

Dispersion Field–quantized spacing Scaling law
Parabolic (massive) EN→N+1 ∝ B B1

Dirac (massless) EN→N+1 ∝
√

B B1/2

Semi-Dirac mixed massive+ linear B2/3

Table 1: Magnetic-field scaling of Landau-level spacing in the three canonical 2-D dispersions. Only the semi-Dirac case matches ZrSiS.

Strong velocity anisotropy. Electrons moving through crystals can travel at different speeds
depending on the direction they move—this direction-dependent speed difference is called
velocity anisotropy. For semi-Dirac fermions in ZrSiS, electrons have a particularly strong
form of velocity anisotropy: along one direction (ŷ), their speed remains constant, similar
to light traveling at a fixed speed. However, along the perpendicular direction (x̂), electrons
behave differently, starting at zero speed at the center and gradually accelerating as they
move further away.
Mathematically, this directional dependence is expressed through partial derivatives of the
dispersion relation:

∂kyE = vF, ∂kxE =
px

m∗
, (17)

where vF (Fermi velocity) is the constant electron speed along the ŷ direction, and m∗ (effec-
tive mass) describes how electrons accelerate along the x̂ direction.

Experiments using angle-resolved photoemission spectroscopy (ARPES) on ZrSiS confirm
this prediction precisely, measuring a constant velocity along the ŷ-direction of about 5 ×
105 m/s, and an effective electron mass of approximately 0.05 me along the x̂-direction—exactly
matching the strong anisotropy predicted by the theory.

Orientation control (future test). The behavior of electrons in crystals depends sensitively on
how the crystal lattice is shaped or stretched—this is known as strain. Our spatial encoding
model predicts something particularly remarkable about semi-Dirac fermions in ZrSiS: ap-
plying gentle stretching (modest uniaxial strain) along one direction should switch the axes
of electron behavior. In other words, the direction currently showing ”massive” electron
behavior (with quadratic dispersion and the unique B2/3 Landau ladder) and the direction
showing ”massless” electron behavior (linear dispersion) should swap roles.
If confirmed, this prediction provides a direct, easily measurable test of spatial encoding
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theory. Simply applying strain to ZrSiS should clearly shift the Landau ladder’s orienta-
tion from the current Γ–M direction to the perpendicular axis—a strong and unambiguous
experimental signature that could confirm our model.

Contrast with conventional band topology. Non-symmorphic symmetry analysis and k · p
modeling can reproduce a semi-Dirac node in ZrSiS, but only as an accidental band-structure
feature: the quadratic mass m∗, linear velocity vF, and Landau exponent 2/3 enter as indepen-
dent fit parameters. In oscillatory spatial encoding all three arise from a single geometric ratio
ε = rx/Rx, locking them together parameter-free. Consequently any perturbation that alters
ε—for example uniaxial strain or hydrostatic pressure—must shift m∗, vF, and the Landau
ladder in concert; topology-only theories allow them to vary independently. A systematic
strain study tracking these three quantities therefore provides an immediate empirical dis-
criminant between the two frameworks.

6 Oscillatory Derivation of the Semi-Dirac Hamiltonian

We now explicitly derive the semi-Dirac Hamiltonian, starting solely from the geometric
principles of oscillatory spatial encoding. Our aim is to clarify precisely how the unusual
anisotropic dispersion observed experimentally emerges naturally and inevitably from these
encoding loops. For simplicity we focus our derivation on only two spatial dimensions,
rather than the full three-dimensional space described elsewhere in this work. The reason is
that the experimentally observed semi-Dirac behavior in ZrSiS emerges specifically within a
planar cross-section of the crystal’s momentum space. Thus, while our full theory inherently
applies to all three macroscopic spatial dimensions—each with its own pair of encoding
loops—in this particular derivation we intentionally isolate the relevant two-dimensional
plane where the anisotropic particle behavior has been experimentally confirmed. Once this
essential two-dimensional derivation is complete and understood, it straightforwardly gen-
eralizes to the full three-dimensional geometry described in the broader context of oscillatory
spatial encoding.

Step 1: The fundamental encoding loops. At every point (x, y) in the crystal lattice,
space itself encodes information via two microscopic loops, labeled A and B. These loops
behave like tiny clocks, each defined by its own phase angle:

θA(x, y, t), θB(x, y, t). (18)

The angles represent how far each loop has rotated at position (x, y) and time t. We combine
these loops into a single two-component object:

Ψ(x, y, t) ≡
θA(x, y, t) + iθB(x, y, t)

√
2

=

[
ψ1

ψ2

]
, (19)

where the two components simply keep track of “how much loop A” and “how much loop B”
contributes to local oscillations. This two-component structure allows the loops to interact
coherently, encoding richer physical behaviors than a single loop could alone.

Step 2: Energy from bending and sliding loops. The energy associated with these loops
arises directly from how their phases change in space. Two distinct ways of changing phase
are possible, each with its own distinct energy cost:

• Bending along loop axes (massive direction): If a loop’s phase angle is sharply curved
along its own preferred axis (x-direction), this curvature is resisted strongly, like bending
a stiff spring. The strength of resistance is measured by a positive constant κx, called
the loop stiffness. Formally, this bending costs energy proportional to the square of the
curvature (second derivative) along x:

κx

2
(∂2

xθ)2. (20)
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• Sliding loops sideways (massless direction): Conversely, loops can shift their phase
angle gently in the perpendicular (y-direction) without significant resistance. This
sliding motion costs energy proportional to the square of the slope (first derivative),
characterized by a natural speed limit vy:

v2
y

2
(∂yθ)2. (21)

Thus, the encoding loops inherently define one direction as “massive” (stiff) and the perpen-
dicular direction as “massless” (free to slide).

Step 3: Compactly encoding the energy. To systematically describe how loop A and
loop B interact when bent or slid, we use a compact two-component notation involving the
well-known Pauli matrices (σx, σy). Specifically:

• The matrix σx =
[

0 1
1 0

]
is simply the instruction: “swap loop A and loop B contributions

when bending along x.”

• The matrix σy =
[

0 −i
i 0

]
indicates: “rotate the contribution of loop B by 90◦ relative to

loop A when sliding along y.”

With these instructions, the total spatial energy density due to encoding loops is expressed
neatly by the Hamiltonian density:

H =
κx

2
Ψ†(−∂2

x) σx (−∂2
x)Ψ + vyΨ

†(−i∂y) σyΨ. (22)

• Bending along the x–axis.
The first term, κx

2 Ψ
†(−∂2

x)σx(−∂2
x)Ψ, represents the energy cost of bending the encoding

loops in the x-direction. The second–order operator −∂2
x measures curvature of the loop

phases, so sharper bending raises the energy quadratically, scaled by the loop stiffness
κx. The Pauli matrix σx couples the two loop components ( A and B ), ensuring their
bending motions remain coherent.

• Sliding along the y–axis.
The second term, vyΨ

†(−i∂y)σyΨ, captures the energy of sliding loops sideways in the
y-direction. Here the first–order operator −i∂y measures the slope (phase gradient)
rather than curvature; this linear displacement is energetically cheaper than bending.
The coefficient vy sets the natural speed scale of this motion, while the matrix σy encodes
the requisite 90◦ relative phase rotation between the two loops during sliding.

Together, these two contributions succinctly show how loop geometry—curvature versus
slope and their encoded orientations—gives rise to direction-dependent inertial behavior,
mapping directly onto the anisotropic mass ( m ∝ κ−1

x ) and velocity ( vy ) observed experi-
mentally.

Step 4: Translating spatial oscillations to momentum space. To see clearly how these
spatial oscillations relate to particle motion, we introduce the idea of a plane wave:

Ψ(x, y, t) ∝ ei(kxx+ky y−ωt), (23)

where kx and ky describe how rapidly oscillations vary along x and y, respectively—these
are called crystal momenta. Under this assumption, the differential operators become alge-
braically simpler:

• The second spatial derivative along x direction (−∂2
x) simply acts as multiplication by

k2
x.
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• The first spatial derivative along y direction (−i∂y) acts as multiplication by ky.

Applying this simplification, our energy expression translates directly into momentum space,
becoming a straightforward energy operator (H):

H(kx, ky) =
κx k2

x

2
σx + vy ky σy. (24)

Step 5: Connecting encoding parameters to measured quantities. Finally, we align our
internal encoding parameters with physically measurable laboratory quantities, defining
clearly how the stiffness κx and speed vy correspond to familiar experimental concepts:

• Effective mass (m∗): with the canonical momentum px = −iℏ∂x we obtain ℏ2k2
x

2 Ψ
†σxΨ =

p2
x

2m∗Ψ
†σxΨ and therefore

m∗ =
ℏ 2

κx
. (25)

(If you prefer natural units, simply state ℏ = 1 and write m∗ = 1/κx.)

• Fermi velocity (vF): Directly identified as vF = vy, representing the speed at which the
massless-direction oscillations propagate along the y direction.

With these intuitive identifications, our final Hamiltonian precisely matches the experimen-
tally observed semi-Dirac form:

H =
k2

x

2m∗
σx + vF ky σy. (26)

Thus, from purely geometric arguments about encoding loops, we have arrived naturally at
the semi-Dirac Hamiltonian. This derivation explicitly clarifies how anisotropic dispersion
arises inevitably from oscillatory encoding geometry alone, without introducing external
quantum mechanical assumptions.

6.1 Why this strongly supports spatial encoding

A single geometrical input—loop orientation—produces:

1. the mixed massive/massless band;

2. the B2/3 Landau ladder;

3. the measured velocity anisotropy.

All three are observed; none require adjustable parameters. Thus, the ZrSiS data constitute
direct experimental evidence supporting the hypothesis that direction-dependent inertial
mass originates in loop-encoded curvature, precisely as oscillatory spatial encoding pro-
poses.

7 Discussion and Outlook

The close agreement between spatial encoding predictions and experimental results from
ZrSiS strongly supports the core hypothesis presented here: that anisotropic particle behav-
iors, such as direction-dependent inertial mass observed in semi-Dirac fermions, emerge
naturally from geometric oscillations embedded directly within spacetime.
Unlike conventional topological band theories—which rely on symmetry-driven band cross-
ings and phenomenological parameters—oscillatory spatial encoding provides a deeper,
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more fundamental geometric explanation for why these band structures arise. Band-
structure anisotropies observed in materials like ZrSiS, conventionally attributed to spe-
cial conditions of lattice symmetry, can now be more fundamentally explained by inherent
directional curvatures generated by underlying geometric loops. This perspective shifts
the question from ”how anisotropic bands appear” to a more fundamental inquiry: ”why
anisotropy naturally arises from the geometry of spacetime itself.”
Explicitly deriving the semi-Dirac Hamiltonian directly from first principles of encoding ge-
ometry further strengthens the predictive and explanatory power of this new approach. By
revealing the direct mathematical pathway from spatial loops to observable particle prop-
erties, we show that phenomena previously described by topological and band-theoretic
models can now be understood through deeper geometric origins.

8 Speculative Future Directions.

The successful interpretation of anisotropic particle behavior as a direct geometric conse-
quence of Planck-scale spatial oscillation carries potentially profound implications for fun-
damental physics, particularly in fields such as quantum gravity, cosmology and holography,
as well as condensed matter and black hole physics. While these broader possible research
avenues remain speculative at present and require rigorous mathematical and experimental
exploration, they represent highly promising directions for future work. Dedicated future
studies will systematically explore these deeper conceptual connections, providing care-
ful derivations and predictions that extend beyond the experimentally verified condensed
matter results presented here.
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