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Abstract - The Shortest Vector Problem (SVP) is a cornerstone of lattice-based cryptography, underpinning
the security of numerous cryptographic schemes like NTRU. Given its NP-hardness, efficient solutions to
SVP have profound implications for both cryptography and computational complexity theory. This paper
presents an innovative framework that integrates concepts from quantum gravity, non-commutative geometry,
spectral theory, and post-supersymmetry (post-SUSY) particle physics to address SVP. By mapping high-
dimensional lattice points to spinfoam networks and by means of Hamiltonian engineering, it is theoretically
possible to devise new algorithms that leverage the interactions topologically protected Majorana fermion
particles have with the gravitational field through the spectral action principle to loop through these spinfoam
networks where SVP vectors could then be encoded onto the spectrum of the corresponding Dirac-like dilation
operators within the system. We establish a novel approach that leverages post-SUSY physics and theories of
quantum gravity to achieve algorithmic speedups beyond those expected by conventional quantum computers.
This interdisciplinary methodology not only proposes potential polynomial-time algorithms for SVP, but also
bridges gaps between theoretical physics and cryptographic applications, providing further insights into the
Riemann Hypothesis (RH) and the Hilbert-Pólya Conjecture. Possible directions for experimental realization
through biologically inspired hardware or biological tissues by orchestrated objective reduction (Orch-Or)
theory are discussed.
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1 Introduction

The Shortest Vector Problem (SVP) plays a pivotal role in the field of lattice-based cryptog-
raphy, serving as the foundation for constructing secure cryptographic primitives resilient
against both classical and quantum attacks. The NP-hardness of SVP underpins its strength,
ensuring that finding the shortest non-zero vector in a high-dimensional lattice remains
computationally infeasible. However, breakthroughs that can efficiently solve SVP would
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have significant repercussions, potentially compromising current cryptographic systems and
altering our understanding of computational complexity.

In this paper, we introduce a novel cryptanalytic framework that amalgamates advanced
concepts from emerging models of quantum gravity, non-commutative geometry, spectral
theory, post-supersymmetry (post-SUSY) particle physics, and bio-computing. By estab-
lishing a rigorous correspondence between high-dimensional lattice points and spinfoam
networks, and by encoding geometry which include SVP vectors within the spectral prop-
erties of Dirac-like dilation operators, we pave the way for novel strategies that leverage the
interactions the fermionic fields have with gravity to achieve algorithmic speedups when
compared to conventional quantum computers. Furthermore, the integration of Majorana
fermions and topological quantum computing introduces robustness against perturbations,
enhancing the stability and reliability of SVP solutions, and may find experimental realiza-
tion in biologically inspired hardware or biological tissues.

Our approach not only aims to provide polynomial-time algorithms for SVP, a problem
which is NP-hard, but also seeks to bridge the interdisciplinary gaps between theoretical
physics and cryptographic applications, providing insights into the Riemann hypothesis and
Hilbert-Pólya conjecture. The subsequent sections elaborate on the theoretical foundations,
mathematical formulations, and in later sections, possible directions for experiments, and
potential implications of this integrated framework, assuming graduate-level background
in these concepts.

2 Background and Literature Review

2.1 Shortest Vector Problem (SVP)

SVP is defined as follows: Given a lattice L in Rn, find the shortest non-zero vector v ∈ L.
Formally,

SVP(L) = min
v∈L\{0}

∥v∥ (1)

SVP is known to be NP-hard under randomized reductions (such as Gram-Schmidt
reductions) [1], making it a robust candidate for cryptographic applications. Efficient algo-
rithms for SVP could have profound implications, potentially rendering many lattice-based
cryptographic schemes insecure [2].

2.2 Hyper-computation and Quantum Gravity Theories

The notion that quantum gravity might exceed classical computational limits draws from
theoretical computer science discussions (such as in Malament–Hogarth (M-H) spacetime
models), exploring systems that could solve problems beyond a Turing machine’s capabil-
ities, such as the halting problem, which is NP-hard, by exploiting physical processes not
bound by classical constraints [3,4]. Quantum gravity, with its speculated non-local and
quantum chaotic properties, is a candidate for such a paradigm, challenging the Church-
Turing thesis in its strong form (which asserts that all physically realizable computation is
Turing-equivalent). Lucien Hardy’s 2007 proposal introduced the idea of quantum computa-
tion without a fixed causal structure, arguing that under theories of quantum gravity which
seem to necessitate no set order of time events, one could still in principle define a model of
computation using the causaloid formalism – essentially encoding the causal connections in
a mathematical object [5-8].

As an example of ”hyper-computation,” a quantum algorithm that exploits the quantum
adiabatic processes is considered for the Hilbert’s tenth problem, which is equivalent to the
NP-hard Turing halting problem and known to be mathematically non-computable. In some
theories of brain function and consciousness, like with Dr. Penrose’s controversial Orch-Or
theory, these ”non-computable” processes are critical towards understanding the nature of
perception and the measurement problem in quantum mechanics. In later sections, the use
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of biologically inspired hardware to map lattice problems and exploit this will be explored
(which has the advantage over current AI systems by requiring much lower power budget
requirements and operating at or near room temperature, which is infeasible with many
current approaches at quantum computing).

Asymptotically safe gravity, proposed by Steven Weinberg, which is discussed in later
sections, posits that quantum gravity has a nontrivial UV fixed point, rendering it non-
perturbatively renormalizable. At this fixed point, the theory becomes scale-invariant,
meaning physical quantities are independent of an arbitrary cutoff scale, such as the Planck
scale. This scale invariance is crucial for simplifying high-energy computations, as it reduces
the degrees of freedom to a finite-dimensional critical surface. Unlike perturbative gravity,
which requires an infinite tower of counter-terms to handle divergences, asymptotically safe
gravity is governed by a few relevant couplings, making trans-Planckian energy calculations
more tractable.

The renormalization group (RG) flow approach, as a mathematical framework, famously
used in condensed matter physics, simplifies complex systems by focusing on critical expo-
nents at UV fixed points. Applying this to SVP in spinfoams could reduce the problem’s
complexity, making it more manageable, similar to how RG simplifies phase transitions.
Degrees of freedom are pruned as the UV fixed point is approached to 2 dimensions, making
the problem space for lattice problems more tractable. In asymptotically safe gravity, this
UV fixed point is proposed to make general relativity safe from the paradoxes produced
by singularities. These methods suggest that gravity in four dimensions could be a non-
perturbatively renormalizable quantum field theory, with a UV critical surface of reduced
dimensionality.

If high dimensional lattice structures are mapped to spinfoam networks, and these high
dimensional structures are mapped to biological neural networks or biologically inspired
hardware, then in theory one could leverage this to tractably solve NP-hard problems. Prun-
ing dendritic connections is analogous to the pruning of the problem space, with dendritic
arborization governed in part by the Navier-Stokes equations and turbulence, which may
be better understood as a quantum gravity phenomenon to explain the weight transport
problem which will be discussed also in later sections.

In the brain, microtubules within dendrites may host topologically protected states de-
scribed by a Dirac-like dilation operator discussed that will be later discussed, which may
interact with periodically driven (Floquet operator based time crystalline) Majorana biopho-
tons along the microtubules to read out information (which is implicated in SVP) by the
Cayley transform, and transport weights that affect the dendritic arborization degrees of
freedom. As the weight transport problem in backpropagation of neural networks cannot
be explained classically, this mechanism could be a direction for research, or be analogized
to other NP-hard problems, like the learning with errors (LWE) problem.

It is important to note that while there are indications of the possibility of leveraging
new physics found within quantum gravity theories to achieve hyper-computation, because
a full theory of quantum gravity is still under development, these ideas remain theoretical.
From a complexity theory perspective, these ideas are fascinating because they challenge our
standard class separations. If one could physically build a “hyper-computer” as described
above, the Church–Turing barrier is broken – one could solve the halting problem or other
arbitrarily hard problem given a construction of the right spacetime. In complexity class
terms, an MH computer doesn’t fit into the Turing machine complexity hierarchy at all
- it has also been argued that under these circumstances, it is difficult to even causally
differentiate inputs from outputs - defying formal frameworks of computation [7].

2.3 Loop Quantum Gravity and Spinfoams

Quantum gravity seeks to reconcile general relativity with quantum mechanics, aiming to
describe the gravitational force within a quantum framework. Loop quantum gravity (LQG)
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uses Ashtekar variables to reformulate general relativity in a way that is more conducive to
quantization, where the reformulation in terms of these variables allows the constraints of
general relativity to resemble those of a Yang-Mills gauge theory. Spinfoam models are a non-
perturbative approach to quantum gravity characteristic of Loop Quantum Gravity (LQG),
representing spacetime as a discrete network of spins evolving over time. Each spinfoam
network is a 2-complex composed of vertices, edges, and faces, encoding the quantum states
of geometry [9].

It is important to note that leveraging predictions made by quantum gravity such as that
spacetime takes on a sort of discrete form at high energies under certain conditions to be
leveraged towards solving NP-hard problems has been occasionally theorized in literature
as an approach towards NP-hard problems [10]. In 2005, Dr. Scott Aaronson proposed
that spinfoam networks under LQG might be leveraged towards developing novel algo-
rithms which use quantum gravity physics for algorithmic speedups [11], and spinfoam
networks, as high dimensional lattice structures (which can also be investigated by models
of Kähler manifolds, since symplectic forms on a Kähler manifold might provide a way to
introduce a non-commutative deformation that leads to a spinfoam-like structure in the non-
commutative limit [12]), are natural candidates for the problem space for our framework.

To clarify, a spinfoam network F consists of nodes v, representing points in the lattice L,
and edges e, representing vectors that connect these points. In LQG, a spinfoam network
is a more specific term used to describe how multiple spinfoams connect or interact with
each other. Mathematically, a spinfoam network is a collection of interconnected spinfoams,
where you not only have the 2-dimensional complexes (as in a single spinfoam), but also
connections between different foams. This creates a kind of lattice-like structure. Spinfoam
networks provide a covariant [13], path-integral formulation of LQG, representing quantum
histories of spinfoams (quantum states of geometry) [14]. They encode the evolution of
quantum geometries through the vertices, edges, and faces labeled by quantum numbers
representing spins.

A spinfoam is essentially a higher-dimensional generalization of a Feynman diagram,
where paths (edges) represent possible quantum transitions, but in spinfoams, these transi-
tions occur not just in space but also in time, making them a sort of quantization of spacetime
itself. As a mathematical model of the underlying symmetries and behavior of spacetime at
its most fundamental level, there have been many interpretations for how spinfoams or spin-
foam networks might manifest, how they might be measured, under what conditions they
may manifest, or how they might interact with matter fields. For the sake of our algorithm,
we will build on this framework as a research direction for investigation.

2.4 Non-commutative Geometry and Spectral Triples

Non-commutative geometry, pioneered by Alain Connes [15], extends geometric concepts
to noncommutative algebras, used within LQG. A spectral triple (A,H ,D) encapsulates the
geometric information of a space, whereA is an algebra of observables,H is a Hilbert space,
and D is the Dirac-like dilation operator. Spectral triples provide a framework for encoding
geometric properties in spectral data. Spectral triples also carry a conceptual similarity to
the ”Three Worlds” of Penrose’s philosophy of mind, mathematics, and physics.

Under Penrose’s framework, the Physical World encompasses the tangible universe,
governed by the laws of physics, from subatomic particles to galaxies. The Mental World is
the realm of mind and subjective experiences, arising from the complexity of the Physical
World but capable of exploring abstract concepts. The Platonic World contains eternal,
unchanging mathematical truths and forms, existing independently of human thought or the
physical universe. These worlds are interdependent: the Physical World operates according
to the mathematical principles of the Platonic World, the Mental World arises from the
Physical World, and the Mental World accesses and interprets the truths of the Platonic
World [16], creating a cyclic relationship or metacircular loop that links mathematics, physics,
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and mind, which can be understood through the ”non-computable” process of quantum
gravity collapse outlined within Orch-Or theory, and is a possible means of experimentally
implementing the mechanism for our algorithm to resolve the SVP. The Platonic World in
Penrose’s framework aligns conceptually with the abstract algebra of a spectral triple, the
Physical World corresponds to the geometry encoded in the Dirac-like dilation operator, and
the Mental World relates to the Hilbert space in the spectral triple [17].

2.5 Majorana Fermions and Topological Quantum Computing

Majorana fermions are particles that are their own antiparticles, exhibiting non-Abelian
statistics [18]. In solid-state systems, they manifest as zero-energy modes in topological
superconductors, offering robust qubits for quantum computation [19]. The topological
protection inherent to Majorana zero modes makes them resilient against local perturbations,
a feature leveraged in quantum error-correcting toric codes [18,20]. In experiments, these
codes are inherent and do not need to be explicitly set, defining topological protection [21].

These topologically protected states provide a method of global distributed nonlocal
memory manipulation through braiding operations [18,20,22,23]. There is speculation that
the brain may host similar topologically protected states [24] [25,26] and could leverage
new physics involving these states and/or their interaction with the gravitational field and
biophotonic emissions through microtubule waveguides for its neural networks to feasibly
implement backpropagation and the weight transport problem [27-31], explain the binding
problem, achieve macroscopic quantumlike emergent behaviors like inter and intra brain
synchrony (which also resembles the nonlinear quantumlike chaotic phenomenon of turbu-
lence), and explain partly how memory is stored and manipulated within biological tissues
[32] - differentiating human conscious intelligence from conventional AI systems that use
neural networks implemented with binary logic gates [33].

2.6 The Hilbert-Pólya Conjecture and Riemann Hypothesis as Related to Quantum Gravity The-
ories

The Hilbert-Pólya Conjecture establishes a theoretical deep connection between the imagi-
nary components of the nontrivial zeros of the Riemann zeta function and the eigenvalues
of a self-adjoint (Hermitian) operator (in the framework discussed within this paper, the
Dirac-like dilation operator [34-36]) thereby linking number theory implicated in many
cryptographic schemes and prime number distributions, with spectral theory implicated in
quantum physics, which can be investigated with non-commutative geometry [37] that is
critical for our algorithm. Some speculative approaches in quantum chaos and topological
quantum computing have suggested that systems hosting robust, nonlocal excitations—such
as non-Abelian Majorana zero modes (which, as anyons, exhibit half-integer “spin” proper-
ties and non-Abelian braiding statistics)—might offer a framework for constructing such an
operator. If it were possible to find a quantum Hamiltonian whose spectrum exactly matches
(after appropriate scaling) the imaginary parts of these zeros, that would prove the Riemann
hypothesis.

The Hamiltonian of a massless Dirac fermion in Rindler spacetime is used to connect
quantum field theory and the zeta function [38]. The eigenvalues of these Hamiltonians,
under specific boundary conditions, relate to the Riemann zeros, and there has been work
on relating the zeros of the Riemann zeta function to the dilation operator associated with
quantum gravity [39]. It is thought that systems that host Majorana zero modes can be
described by Hamiltonians that have similar eigenvalue distributions to those appearing in
random matrices [40-42]. Freeman Dyson, one of the founders of random matrix theory, first
observed that the statistical distribution within the Montgomery pair correlation conjecture,
appeared to be the same as the pair correlation distribution for the eigenvalues of a random
Hermetian matrix (remember that SVP is NP-hard under random reductions [1]) from the
Gaussian Unitary Ensemble (GUE), which is related to the non-Abelian statistics implicated
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in this framework characteristic of fermions [43,40,44-49]. These eigenvalues can behave like
the zeta function zeros - in particular, if the distribution of eigenvalues for the Dirac-like
dilation operator aligns with the Riemann zeros, then the behavior of Majorana systems
can be seen as an analogue to the Riemann hypothesis in physical systems for a specific
Hamiltonian; the Bogoliubov–de Gennes (BdG) Hamiltonian, which describes Majorana
fermion zero mode quasiparticle excitations in superconductors [50]. In fact, there is a way
to derive the exact forms of the Majorana zero modes using vertex-algebra techniques which
are implicated in our models of spinfoams and spinfoam networks [51].

In 1998, Alain Connes conceived of a trace formula equivalent to the Riemann hypothesis,
with a geometric interpretation of the explicit formula of number theory as a trace formula
on non-commutative geometry of Adele classes, providing a bridge between the physics of
nonlinear deterministic systems and quantum chaos [52] [53], which bridges probabilistic
and deterministic fields of physics. Researchers have noted that if a BdG system’s energy
levels align in a particular way (e.g., random-matrix universality classes), then in principle
one might detect “zeta-like” spectral statistics in real materials. If a BdG Hamiltonian
describing Majorana modes transitions into a scale-invariant phase under renormalization
group (RG) flow, there might be a regime in which its effective Hamiltonian resembles
a dilation generator and thus could accurately model the Hamiltonian of the Riemann
hypothesis, and thus the physical realization to the Hilbert-Pólya conjecture, thus proving
the Riemann hypothesis. In condensed matter, such a scenario is often difficult to achieve
except near certain quantum critical tipping points, which would involve converging on the
UV fixed point in our framework, which defines transition to quantum chaos and renders
theories of quantum gravity asymptotically safe [54], which we will discuss.

The self-adjoint operator described by the Hilbert-Pólya conjecture connects number
theory and quantum mechanics, with its eigenfunctions represented by the Hurwitz zeta
function and with boundary conditions selects discrete eigenvalues corresponding to Rie-
mann zeta zeros. Quantum chaos often signals transitions in systems from nonlinear and
deterministic to turbulent or quantum chaotic behavior (which is discussed in later sections
as related to dendritic arborization and pruning of pathways in the parameter space of our
algorithm). Such transitions can occur in scale-invariant systems, such as those at UV fixed
points in asymptotically safe gravity (ASG), suggesting a connection between quantum grav-
ity effects at the Planck scale and macroscopic quantumlike effects, where quantum gravity
perturbations at the Planck scale seed the large scale quantumlike chaotic effects [55,56].
The dilation operator, first described by the Berry-Keating conjecture, associated with scale
transformations, could be the classical counterpart to the quantum Hamiltonian, capturing
spectral properties of spacetime, providing an avenue for investigating quantum gravity.

If a BdG system transitions into a scale-invariant phase under RG flow as it approaches the
UV fixed point, thus, its effective Hamiltonian might mimic the dilation operator linked to
Riemann zeta zeros. Indeed, work has been done mapping of the Berry-Keating Hamiltonian
to superconductivity models where the Riemann zeta zeros are tied to missing states in a
renormalizable quantum system, using cyclic RG flows, which highlights its relevance in
this context [36,57]. These systems might be tuned to exhibit criticality or phase transitions
that mirror the behavior of the operator. The Dirac operator can be adapted to describe
Majorana fermions by imposing the Majorana condition, leading to the Majorana equation,
and extended into higher dimensions with Majorana tower models, which are relevant
to modeling high dimensional lattice problems in our framework. Thus, under specific
conditions, the Dirac operator can govern Majorana fermions.

Zeta functions appear throughout physics to handle divergences, especially in quantum
field theory. Elizalde’s methods show how spectral zeta functions regulate infinities while
preserving physical information [58]. Wilson’s RG methods reveal that chaotic flows in
RG space can drive duality transitions (e.g., strong-weak coupling) [59]. Research explic-
itly connects RG trajectories to the Riemann zeta function critical half-strip, showing how
chaos might underpin duality in field theories [60]. These chaotic flows resonate with phys-
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ical systems undergoing turbulence or phase transitions (which will be discussed in later
sections).

In some formulations the Hamiltonian of the Riemann zeta function is non-Hermitian but
PT-symmetric (Parity-Time symmetric), yielding real spectra [61]. In quantum mechanics,
PT symmetry is an extension of Hermiticity that can still ensure real eigenvalues under
certain conditions. PT-symmetry’s inclusion of time-reversal suggests deeper connections
to time-reversal symmetry expected in a quantum gravitational system. This symmetry
might play a role in understanding causality or emergent time in quantum gravity. Class
C Hamiltonians describe systems with time-reversal symmetry breaking (such as in time
crystals which are discussed in later sections) but preserving spin-rotation invariance. This
symmetry class is relevant to disordered superconductors and corresponds to the Altland-
Zirnbauer classification. Spectral statistics of class C Hamiltonians align with the critical
strip properties of zeta zeros, where eigenvalue distributions follow GUE-like statistics [62].

Critically, one research group has identified the first non-trivial zeros of the Riemann
zeta function and the first two zeros of Pólya’s fake zeta function, using a novel Floquet
method, through properly designed periodically driving functions, which can be mapped to
the Dirac-like dilation operator by the Cayley transform. According to this method, the zeros
of these functions are characterized by the occurrence of crossings of quasi-energies when the
dynamics of the system are frozen, with experimentally obtained values in agreement with
their exact values, providing the first experimental realization of the Riemann zeros. This is
critical both for our algorithm and is directly relevant to Orch-Or theory, which posits that
quantum gravity effects can backpropagate through brain tissues in the form of optically
driven signals in microtubules within dendritic cells to holographically encode memory,
perception, and consciousness [25,26], and interact with topologically protected states like
Majorana zero modes [63-65].

So-called ”superconducting billiards” are systems in which quasiparticles (like Majorana
zero modes) move within a bounded, superconducting cavity [66] (e.g., hyperbolic cavi-
ties and quarter-stadium shapes) and experimentally demonstrate quantum chaos. These
systems are derived from quantum billiards, where particles move freely within a confined
region, undergoing specular reflection at the boundaries. In a superconducting environment
described by the BdG equations this can account for the particle-hole symmetry inherent in
superconductors. The boundary conditions and the superconducting gap create a unique
spectral structure that combines elements of regular and chaotic dynamics relevant in our
framework [67,68]. In these ”billiard” systems with hyperbolic geometries (e.g., systems
shaped like Poincaré surfaces), quasiparticle trajectories behave similarly to the exponential
divergence in an inverted harmonic oscillator. Barrau’s work on the inverted harmonic os-
cillator as a candidate for a self-adjoint operator in the Hilbert-Pólya conjecture illustrates
how hyperbolic dynamics relate to zeta zeros whose chaotic dynamics in superconducting
billiards mimic the geodesic flows on hyperbolic surfaces tied to modular forms and Adelic
constructions, characteristic of quantum gravity.

The Majorana tower provides an additional framework for investigating the deep rela-
tionship between Majorana zero modes, the Riemann zeta function, and the Hilbert-Pólya
conjecture by providing a set of energy eigenvalues derived from its infinite-component
wave equation. These eigenvalues depend on the spin angular momentum, mass, and other
intrinsic properties of particles. As a theoretical construct proposed by Ettore Majorana in
1932 as an extension of the Dirac equation, the Majorana tower describes a spectrum of parti-
cle states with an infinite number of components, and in some formulations, the eigenvalues
of the Majorana tower operator have been related to the non-trivial zeros of the Riemann
zeta function through integral transforms (e.g., Mellin-Barnes representations). This frame-
work unifies the treatment of bosons and fermions under a single equation and extends the
representation of quantum fields to include infinite-dimensional unitary representations of
the Lorentz group. This correspondence is mediated by integral transforms, including the
Mellin-Barnes representation and modified Bessel functions [69]. Furthermore, the Majorana
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tower’s ability to describe both bosonic and fermionic systems suggests it could be applied
to a variety of quantum systems, including condensed matter settings like superconductors,
where Majorana quasiparticles arise.

As a further mathematical tool for analysis, the Hardy-Littlewood prime-pairing conjec-
tures are related to the distribution of primes and their alignments, mirroring the symmetry
seen in PT-symmetric quantum systems. The oscillatory behavior of zeta function terms in
Hardy-Littlewood expansions can be mathematically linked to the symmetry properties of
operators tied to Riemann zeta zeros. The cyclic behavior in RG flows and the study of crit-
ical systems, such as those tied to the Riemann zeta function, share mathematical parallels
with the Hardy-Littlewood method’s oscillatory integrals. This connection emerges from
their reliance on Fourier (or Mellin) methods and decompositions into periodic components.
Modular forms and Galois representations contribute to understanding dualities and topo-
logical invariants in quantum gravity theories. Their spectral decompositions mirror the
eigenvalue distributions of spacetime operators tied to zeta functions [70].

The ”Russian Doll” (RD) model of superconductivity refers to a quantum system where
the RG flow is cyclic rather than fixed. This behavior mimics ”nested scaling” seen in
systems like the Russian nesting dolls or in Kolmogorov scaled systems, where scaling
transformations repeat periodically. Germán Sierra’s work explores how the Berry–Keating
Hamiltonian can be linked to the Russian Doll model. By mapping the Hamiltonian H=xpH
= xpH=xp to a renormalizable quantum model, the zeros of the Riemann zeta function
emerge not as eigenstates but as missing spectral lines in a continuum. The model involves
cyclic RG flows, highlighting symmetry-breaking and quantum criticality akin to chaotic
superconducting systems [71].

This RD model of superconductivity describes systems where the RG flow is cyclic,
rather than reaching a fixed point, or where the fixed point itself reaches a cyclic phase. This
cyclic RG flow is characterized by periodic behavior in physical quantities under scaling
transformations. As this model’s analogy to ”Russian dolls” stems from the way each energy
scale ”contains” information about smaller scales, this is related to nonlocal and globally
distributed memory storage in quantum computational paradigms reliant on Majorana zero
modes, and in literature has been linked to the Berry–Keating Hamiltonian, which mimics
the statistical properties of the Riemann zeta zeros. The RD model suggests that the zeros
are missing spectral lines in the quantum system [71].

2.7 Compatibility with Other Theories of Quantum Gravity

While this approach will rely on theoretical assumptions made within LQG such as the
existence of spinfoam networks, which involves non-commutative geometry [72], it can be
shown that this approach is also compatible with and compliments other theories of quantum
gravity, such as those found within string theory and M Theory, which utilize the Anti-de-
Sitter/Conformal Field Theory (Ads/CFT) duality and the holographic principle, as well as
ASG, which utilizes the RG flow equations and fixed point theory to posit the existence of a
UV fixed point which renders theories of gravity asymptotically safe from real singularities
[73,54].

In our framework, the zeros of the Riemann zeta function which model the spectrum
of the Dirac-like dilation operator within this framework provide boundary conditions that
influence the stability of fields (such as the Higgs field) conformally across dimensions in
their contributions towards the RG flow equations with their beta functions and Yukawa
couplings towards a UV fixed point [74], and in certain formulations where a background
B-field is considered, the boundary CFT can exhibit a non-commutative geometry consistent
with LQG that is explored within this paper [75].

The zeros of the Riemann zeta function modeling the spectrum of a Dirac-like dilation
operator within this framework interpreted as spectral points in NCG can thus can serve as
boundary conditions in the Ads/CFT duality. This interpretation suggests that these zeros
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along the critical line mark the intersection of quantum fields and gravitational theories [76],
providing a bridge between the bulk and boundary descriptions. Our universe, though not
an Ads space [77], can be interpreted as a de-Sitter brane in an Ads space (a so-called ”centaur
geometry” [78-89]), where the 5-dimensional cosmological constant is distinguished from the
bulk 4-dimensional constant from the brane (which is one model for explaining accelerated
expansion [81,82], which may not be completely uniform throughout the universe [83, 84]).

Further research onto this topic reveals an even deeper connection between the Hamil-
tonian of the Riemann Zeta function and quantum gravity. In LQG, the quantum states of
black holes are described by spin networks on the horizon (the ”punctured surface” model).
These punctures are labeled by spin representations, which quantify the discrete quanta of
area. The counting of these spin network states gives a microstate-based derivation of black
hole entropy, proportional to the horizon area. The connection between spinfoam models,
black hole microstates, and the zeta function arises from the underlying chaotic and discrete
nature of these systems - the chaotic spectrum of the dilation operator matches the zeros of
the Riemann zeta function, suggesting that these zeros encode the quantum microstructure
of spacetime itself, or in our case, the spinfoams and spinfoam network lattice geometry
[39,85,86].

The imposition of Charge-Parity-Time (CPT) symmetry and other boundary conditions
in the dilation operator framework is analogous to the imposition of geometric constraints in
spinfoam models. These conditions create a discrete set of states, which can also correspond
to black hole microstates, which are spinfoam amplitudes contributing to the overall path
integral. A “dilation-like Hamiltonian” that we have discussed earlier, that reproduces
the Riemann zeros might relate, we hypothesize, to this Dirac-like quantum-gravitational
operator we explore in this paper within our condensed matter spinfoam model, where the
Fourier coefficients of the j-function grow exponentially in a way that parallels how black
hole microstates grow with a black hole’s mass [85].

In various approaches to quantum gravity, black hole microstates which are similar ge-
ometric constructs as spinfoams and spinfoam networks in out framework can be encoded
through distinct but analogous mathematical constructs: j-function coefficients, Riemann
zeta zeros [39], and Hodge numbers. The j-function’s Fourier coefficients, central in certain
2D conformal field theories, count states whose exponential growth matches the entropy of
3D black holes via AdS/CFT. Riemann zeta zeros, in speculative “Hilbert–Pólya” visions,
might represent the spectrum of a universal gravitational Hamiltonian, suggesting each zero
labels a possible quantum state in a chaotic spacetime. Meanwhile, Hodge numbers in string
compactifications govern the number of nontrivial cycles on which branes can wrap, pro-
ducing distinct black hole configurations whose degeneracies yield the Bekenstein–Hawking
entropy. Though rooted in different formalisms, each framework shows how intricate “spec-
tral” or topological data ultimately translates into the microscopic count of black hole states,
which is conceptually similar in condensed matter system based spinfoam and spinfoam
network constructions [87,88].

Einstein criticized quantum field theory as correct, but incomplete [89]- and while general
relativity has been shown to be remarkably predictive, inconsistencies arise under certain
conditions and at singularities [90]. In the context of ASG, a ”UV fixed point” refers to
a specific point in the RG flow where the coupling constants of the theory stabilize at
high energies or short distances (ultraviolet regime), acting as a theoretical limit which
prevents the theory from becoming inconsistent, and this is a proposed framework to avoid
the ”swampland” landscape of inconsistent quantum gravity theories seen with M/string
theoretical approaches [91,92]. It is important to note that work has explored how discrete
spacetime structures in LQG can lead to string-like phenomena [93]. A conjectured duality,
termed H-duality, proposes that LQG and topological M-theory describe aspects of the same
underlying theory. In this view, LQG captures the non-perturbative dynamics of spacelike M-
branes (SM-branes), which are interpreted as gravitational holonomies. This duality bridges
M-theory’s higher-dimensional structures with the background-independent quantization
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of spacetime in LQG we need for our algorithm [94].
ASG not only provides a direction for resolving many of the issues associated with

general relativity, but restricts the number of fundamental particles that can exist - ruling
out supersymmetric particle physics theories like E8 [95], which have produced predictions
that have failed to materialize in experiments at the large hadron collider (LHC) [96]. At
the UV fixed point, the RG flow stabilizes the spinfoam network’s geometry, ensuring that
the spectral properties of the Dirac-like dilation operator are consistent and scale-invariant
[97]. This stabilization is crucial for accurately deriving the Einstein-Hilbert action from the
spectral action, as it ensures that geometric invariants are well-defined and persistent across
scales [98-100].

In dynamical systems like those used in this algorithm, the Frobenius–Perron (FP) op-
erator describes the evolution of probability densities under a given transformation. When
lattice transformations preserve scale invariance, the operator’s spectral properties can re-
veal stable invariant measures and decay rates, known as Ruelle–Pollicott (RP) resonances
[101]. These are measures that remain unchanged under the dynamics of the system, indicat-
ing regions of stability. The existence and uniqueness of such measures can be deduced from
theorems about FP operators [102]. When lattice transformations in an algorithm are de-
signed to preserve this scale invariance, the resulting invariant measures and decay rates (as
revealed by the FP operator) align with the geometric properties of the UV fixed point. This
alignment ensures that the algorithm operates within a framework that mirrors the stable,
scale-invariant nature of the UV fixed point, thereby reinforcing the dynamic optimization
process inherent in our algorithm.

Usefully, recent studies utilizing functional renormalization group (FRG) techniques have
provided evidence supporting the existence of a non-trivial UV fixed point in gravity, espe-
cially since gravitational interactions become weaker at high energies, there is numerical and
analytical evidence for the existence, there is evidence fermions and scalar fields (which we
explore in this paper) may enhance the stability of the UV fixed point, and there is evidence
spacetime might behave as if it has fewer dimensions at high energies, which could help in
renormalizing gravity [95, 103-106]. These studies indicate that gravity might indeed exhibit
asymptotic safety, ensuring its consistency at high energies, where certain spinfoam models
exhibit fixed-point behavior that we can use for the purposes of our algorithm [107].

In holographic theories like AdS/CFT duality, the area of minimal surfaces in the bulk
is proportional to the entanglement entropy of a boundary region. This is encapsulated in
the Ryu-Takayanagi formula. Entanglement entropy can act as an effective gravitational
field source in emergent gravity theories. This view aligns with Jacobson’s thermodynamic
derivation of Einstein’s equations, where spacetime dynamics arise from the Clausius relation
applied to entanglement entropy [108]. As mentioned previously, there has been work done
to suggest that LQG emerges naturally as a compatible theory with string or M-theoretical
models. In matrix models, the Riemann zeta function has been represented as a partition
function associated with FZZT branes. The master matrix M0M0M0 serves as a candidate
for the Hilbert–Pólya operator, encapsulating the zeta zeros as its eigenvalues. These models
also connect to two-dimensional quantum gravity (with symmetries in two-dimensions [106]
can be described by mathematical objects like the Monster group and Moonshine module)
via the Wheeler-DeWitt wavefunction and Liouville theory [109,110].

Some approaches to quantum gravity predict a kind of random holographic ”noise” or
quantum perturbation introduced at the Planck scale due to gravity and the uncertainty in
the fabric of spacetime itself under certain conditions [55] [56]. This is because the smooth,
continuous spacetime of general relativity breaks down at extremely small scales (around the
Planck scale), and so instead of behaving like a smooth manifold, spacetime becomes discrete
or quantized like described by LQG, leading to inherent uncertainties and fluctuations in its
geometry, which is one proposed mechanism for variances in inflation rates throughout the
universe. Just as quantum mechanics introduces uncertainty in position and momentum,
quantum gravity is thought to introduce uncertainty in the metric tensor, which describes
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the geometry of spacetime [111,112].
In the context of our framework, when representing spacetime as a discrete lattice (e.g.,

spinfoam networks), the randomness at the Planck scale could correspond to perturbations
of the lattice structure [55,56]. These perturbations can mimic the process of random lattice
reductions, where the lattice basis is repeatedly altered stochastically to find optimized
configurations in a holographic feedback loop. Quantum perturbations at the Planck scale
act as holographic ”noise” from the gravitational field which we will later discuss, influencing
the curvature and connectivity of the lattice representation, through a feedback mechanism
where, in a sense, spacetime loops in on itself.

2.8 Other Attempts at Breaking Lattice Cryptography

There have been many interesting approaches towards solving the SVP, but so far, none has
achieved a speedup to allow a fully polynomial time solution, like the Lenstra–Lenstra–Lovász
(LLL) algorithm which can provide a polynomial time approximation within a factor depen-
dent on the lattice dimension which grows exponentially, the Block Korkine-Zolotarev (BKZ)
algorithm which builds on LLL to achieve better approximations but has the potential for
increased runtimes, Siegel’s algorithm which can be performed to find an approximation in
exponential time, Kannan’s algorithm which provides an exact solution but in exponential
time, or Voronoi cell based algorithms which work well in smaller dimensional lattices but
is computationally exponentially more expensive as lattice dimensionality grows [113-116].

One algorithm introduced by Yilei Chen, an assistant professor at Tsinghua University
Institute for Interdisciplinary Information Science (IIIS) in 2024, claimed by combining with
the reductions from lattice problems to the Learning-With-Errors problem (another cryp-
tographic problem which is equivalent [117-119]), it is possible to obtain polynomial time
quantum algorithms for solving the decisional shortest vector problem (GapSVP) and the
shortest independent vector problem (SIVP) for all n-dimensional lattices within approxi-
mation factors of Ω(n4.5) [43].

Chen’s algorithm first introduced Gaussian functions with complex variances in the de-
sign of quantum algorithms. In particular, he exploited the feature of the Karst wave in the
discrete Fourier transform of complex Gaussian functions. Secondly, he used windowed
quantum Fourier transform with complex Gaussian windows, which allows a combination
of the information from both time and frequency domains. Using those techniques, he first
converted the LWE instance into quantum states with purely imaginary Gaussian ampli-
tudes, then converted purely imaginary Gaussian states into classical linear equations over
the LWE secret and error terms, and finally purportedly solved the linear system of equations
using Gaussian elimination, which he claimed gives a polynomial time quantum algorithm
for solving LWE.

While at first Chen’s algorithm seemed promising, in Step 9 of his algorithm, Chen
attempted to extract the final solution vector from the quantum state created in prior steps.
However, this step introduced critical errors which caused a retraction of the paper due to:

• Quantum State Collapse: The operation in Step 9 inadvertently collapsed the inter-
mediate quantum state, losing critical information required for recovering the shortest
vector. This collapse occurred because the state was not fully constrained or reversible
after the windowed QFT.

• Inconsistent Lattice Basis: The domain extension trick applied earlier introduced
distortions in the lattice basis which was not an invariant expressed throughout the
reductions. These distortions made the lattice basis inconsistent, which affected the
integrity of the quantum state and made the final output unreliable.

• Irreversibility: Certain intermediate operations were not designed to be CPT symmet-
ric and reversible. This irreversibility compounded the loss of information during the
final steps, leading to an incorrect or incomplete solution.
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Chen’s error, primarily stemming from the collapse of quantum states in Step 9 of his al-
gorithm, is mitigated in our framework through the incorporation of gravitational feedback
and spectral constraints. In Chen’s approach, the lack of proper constraints and reversibil-
ity during the transformation of quantum states into classical linear equations in random
reductions caused critical information to be lost, rendering the final step unreliable. Our
framework resolves this issue by leveraging the spectral properties of the Dirac-like dilation
operator and the dynamic stabilization provided by spinfoam networks under gravitational
perturbations. Holographic noise introduced by quantum gravity perturbations act as a
feedback loop, ensuring that quantum states remain stable and reversible throughout the
algorithm.

Additionally, the UV fixed point and scale-invariant transformations in our framework
preserve the consistency of the lattice basis, eliminating the distortions introduced by Chen’s
domain extension trick. By embedding ”structured” randomness through Planck-scale per-
turbations [55,56], our framework mimics the stochastic advantages of Chen’s windowed
QFT while maintaining geometric and spectral stability. These mechanisms collectively en-
sure that our algorithm avoids the problematic irreversibility and inconsistencies by means
of bidirectionality which is discussed in later sections.
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3 Theoretical Framework

3.1 Mapping SVP Lattice to Spinfoam Networks

Consider a lattice L in Rn defined by basis vectors {b1,b2, . . . ,bn}:

L =

v =
n∑

i=1

aibi

∣∣∣∣∣∣∣ ai ∈ Z

 (2)

Here, each lattice point v is an integer linear combination of the basis vectors bi. A
spinfoam network S = (V,E) consists of a set of nodes V and edges E, where:

• Nodes: Each node k ∈ V corresponds to a lattice point vk ∈ L, representing positions in
the lattice.

• Edges: Each edge e ∈ E corresponds to a lattice vector e ∈ L, representing the connec-
tions between lattice points.

Formally, the relationship between the spinfoam network and the lattice is established
through the following maps:

• f : V → L, mapping each node k ∈ V to a lattice point vk ∈ L, where each node
corresponds to a basis vector in the lattice.

• F : E → [0, 1] → L, mapping each edge e = (k, l) ∈ E to the continuous set of points
between vk and vl, representing the continuous interpolation along the edge.

To preserve the geometric properties of the lattice L within the spinfoam network S, the
following criteria are established:

• Length Preservation: Assign weights to edges e ∈ E such that

Weight(e) = ∥e∥

where ∥e∥ denotes the Euclidean norm of the lattice vector e.

• Local Interactions: Define local constraints within F to maintain angles and distances
analogous to those in L. This ensures that the spinfoam network accurately reflects the
geometric structure of the underlying lattice.

Define a functor F : CL → CS where:

• CL is the category representing the lattice L.

• CS is the category representing the spinfoam network S.

The functor F maps:

• Objects: F (v) = v for each lattice point v ∈ L.

• Morphisms: F (e) = e for each edge e ∈ E.

This mapping ensures that vector addition in L corresponds to edge connections in S,
preserving the algebraic structure within the categorical framework.
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3.2 Encoding the Shortest Vector on the Spectrum of the Dirac-like Dilation Operator

3.2.1 The Dirac-like Dilation Operator

Utilizing the structure of spinfoam networks within LQG, the Dirac-like operator D encap-
sulates both geometric and topological information of the network. Specifically, we employ
Clifford algebras to construct gamma matrices γe corresponding to each edge e in the spin-
foam network F . These gamma matrices satisfy the Clifford algebra relations:

{γe, γe′} = 2δee′I,

where I is the identity operator. Spinors ψv are assigned to each node v in F , representing
fermionic states that interact with the geometric structure encoded by the spinfoam.

To bridge the gap between geometry and spectral theory, we employ the framework of
spectral triples (A,H ,D), where:

• A is the algebra of observables on the spinfoam network F , typically represented by
bounded operators onH .

• H is the Hilbert space of fermionic states ψv associated with each node v in F .

• D is the Dirac-like operator defined onH , encapsulating the geometric and topological
information of F .

Spectral triples provide a non-commutative generalization of Riemannian geometry, allow-
ing us to extract geometric invariants from the spectral properties of D.

3.2.2 Spectral Correspondence

Theorem 1: The smallest non-zero eigenvalue λmin of the Dirac-like operator D on the spinfoam
network F is directly proportional to the length of the shortest non-zero vector ∥vmin∥ in the SVP
lattice L.

Proof To establish the correspondence between the spectral properties of the Dirac-like op-
erator D and the geometric minimization inherent in SVP, we leverage both the Lichnerowicz
Formula and the Spectral Action Principle.

1. Lichnerowicz Formula and Geometric Interpretation: The Lichnerowicz Formula
relates the square of the Dirac-like operator to the Laplacian and scalar curvature [120]:

D2 = ∇∗∇ +
R
4

(3)

where ∇∗∇ is the connection Laplacian and R is the scalar curvature of the spinfoam
network F . This formula connects the spectral properties of D to the underlying geometry
of F .

2. Spectral Action Principle: According to the Spectral Action Principle, the physical
action S of the system is a function of the spectrum of D:

S = Tr
(

f
(D
Λ

))
(4)

where f is a cutoff function that decays rapidly, and Λ is a scaling parameter. Minimiz-
ing the spectral action S leads to constraints on the eigenvalues of D, effectively encoding
geometric optimization into the spectral framework.

3. Rayleigh-Ritz Variational Principle: The Rayleigh-Ritz variational principle states
that for a Hermitian operator D2, the smallest eigenvalue λmin is given by:
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λmin = min
ψ∈H , ψ,0

⟨ψ|D2
|ψ⟩

⟨ψ|ψ⟩
(5)

where the minimum is attained when ψ is the eigenvector corresponding to λmin[121].

4. Correspondence to SVP: By construction, the Dirac-like operator D is designed such
that its spectral properties reflect the geometric structure of the spinfoam network F , which
is in bijective correspondence with the SVP lattice L. Specifically:

• Each eigenvalue λk of D corresponds to the length ∥vk∥ of a lattice vector vk in L.

• The smallest non-zero eigenvalue λmin thus directly relates to the length of the shortest
non-zero vector ∥vmin∥.

5. Proportionality Constant: Assuming appropriate normalization within the spectral
action framework, we establish a proportionality constant p such that:

λmin = p · ∥vmin∥.

The constant p is determined by the scaling parameters within the spectral action and the
geometric configuration of F . Combining the variational characterization of λmin with the
spectral correspondence, we conclude that:

λmin ∝ ∥vmin∥. (6)

Thus, identifyingλmin through spectral analysis directly yields ∥vmin∥, effectively encoding
the solution to the SVP within the spectral properties of the Dirac-like operator D.

3.2.3 Alternative Proof Steps Without the Rayleigh Quotient

Absence of the Rayleigh Quotient Instead of using the Rayleigh Quotient, we employ Direct
Operator Analysis by examining the operator norm and utilizing Min-Max Theorems in
spectral theory.

Min-Max Principle The Min-Max Principle states that for a self-adjoint operator D, the k-th
smallest eigenvalue λk can be characterized as:

λk = min
S⊂H

dim S=k

max
ψ∈S
ψ,0

⟨ψ,Dψ⟩
⟨ψ,ψ⟩

(7)

Applying this to λmin, we consider the subspace orthogonal to the zero eigenvalue (if
present).

Geometric Correspondence The operator D is constructed such that its minimal non-zero
eigenvalue corresponds to the shortest vector in the lattice L. This is achieved by designing
D to reflect the geometric structure ofF , where shorter vectors impose smaller contributions
to the operator’s spectrum.

Proportionality Establishment Through careful construction of D, where the influence of
shorter vectors is amplified, we ensure:

λmin = c∥vmin∥

where c, like p, is a proportionality constant determined by the normalization of D and the
scaling parameter Λ in the spectral action principle. Therefore, λmin serves as a spectral
proxy for ∥vmin∥, effectively encoding the solution to the SVP within the spectral properties
of the Dirac-like operator D.
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3.2.4 Spectral Action Principle and Its Implications for SVP

Remember from 3.2.3 that the spectral action principle plays a pivotal role in linking the
spectral properties of the Dirac-like operator D to the physical and geometric aspects of
the spinfoam network F . By defining the action solely in terms of the spectrum of D,
we ensure that the optimization of geometric structures directly influences the spectral
characteristics essential for solving SVP. Minimizing the spectral action S entails optimizing
the spectrum of D to favor configurations where λmin is minimized. Given the established
spectral correspondence, this optimization directly translates to identifying the shortest
vector vmin in the SVP lattice L.

Mathematical Formulation: The spectral action influences the evolution of the spinfoam net-
work through the Dirac-like operator’s spectrum. Specifically, the minimization condition:

δS = 0⇒ δTr( f (D/Λ)) = 0

imposes constraints on the eigenvalues λk of D, steering the system towards configurations
where λmin corresponds to the shortest lattice vector.

Impact on Algorithmic Efficiency: By leveraging the spectral action principle, the frame-
work ensures that spectral optimization inherently aligns with the geometric minimization
required for solving SVP. This synergy facilitates:

• Direct Spectral Analysis: Enables the extraction of λmin without iterative search,
thereby enhancing computational efficiency.

• Robust Geometric Encoding: Ensures that the spectral properties of D faithfully rep-
resent the geometric structure of F , maintaining the integrity of the SVP solution.

3.2.5 Deriving the Einstein-Hilbert Action from the Spectral Action

In our algorithmic framework, which integrates concepts from quantum gravity, non-
commutative geometry, spectral theory, and cryptography to address the SVP, we have
discussed how the Spectral Action Principle plays a pivotal role. The Einstein-Hilbert ac-
tion is a fundamental concept in the formulation of General Relativity (GR), serving as the
cornerstone for deriving Einstein’s field equations through the principle of least action. It
encapsulates the dynamics of spacetime and its interaction with matter and energy [122]. The
Einstein–Hilbert term is not just an isolated gravitational term but part of a broader spectral
framework that unifies gravity with gauge interactions. For our purposes, this unification
supports the idea that the gravitational dynamics encoded via the Einstein–Hilbert action
play an essential role in the stabilization (via the UV fixed point) of the spinfoam network
used to encode the SVP [123]. Below, we detail the rigorous derivation of the Einstein-Hilbert
action from the spectral action, which incorporates torsion via Einstein-Cartan (EC) theory,
and the implications for our SVP algorithm.

Heat Kernel Expansion To establish the connection between the spectral action and classical
gravitational dynamics, we employ the Heat Kernel Expansion. The heat kernel e−tD2

provides a tool for probing the spectral properties of the Dirac-like operator D and relating
them to geometric invariants of the underlying manifold [124]. Specifically, we utilize the
asymptotic expansion of the heat kernel as the parameter t approaches zero:

e−tD2
∼

1
(4πt)d/2

∞∑
n=0

tnan(D2), (8)

where d is the dimension of the manifold, and an(D2) are the heat kernel coefficients encoding
geometric information such as curvature and torsion.

O16 https://ipipublishing.org/index.php/ipil/

https://ipipublishing.org/index.php/ipil/


Shortest Vector Problem

Asymptotic Expansion of the Spectral Action Utilizing the heat kernel expansion, we can
approximate the spectral action for large Λ:

S ∼
∞∑

n=0

f4−nΛ
4−nan(D2),

where f4−n are the moments of the cutoff function f :

f4−n =

∫
∞

0
f (u)u3−n du.

Identification of Terms Each term in the asymptotic expansion corresponds to specific phys-
ical quantities:

• Cosmological Constant (a0): The zeroth heat kernel coefficient a0(D2) is proportional
to the volume of the manifold and relates to the cosmological constant Λcosmo:

S0 = f4Λ
4a0(D2) ∼

Λ4

16πG

∫
√
−g d4x.

• Einstein-Hilbert Action (a2): The second coefficient a2(D2) corresponds to the scalar
curvature R, thereby reproducing the Einstein-Hilbert action SEH:

S2 = f2Λ
2a2(D2) ∼

1
16πG

∫
R
√
−g d4x.

• Higher-Order Terms (a4): The fourth coefficient a4(D2) includes higher-order curvature
terms and interactions with matter fields:

S4 = f0a4(D2) ∼
∫ (

RµνρσRµνρσ + (matter interactions)
) √
−g d4x.

Inclusion of Torsion via Einstein-Cartan Theory To faithfully incorporate the intrinsic angular
momentum (spin) of fermions into the geometric framework, we extend the spectral action
to include torsion through Einstein-Cartan (EC) Theory. Unlike General Relativity, EC
theory allows for a non-vanishing torsion tensor Tλµν, which is algebraically related to the
spin density Sλµν of matter fields [125].

SEC =
1

16πG

∫ (
R +

1
2

TλµνTλµν
)
√
−g d4x + Smatter, (9)

where the additional torsion terms account for spin-spin interactions mediated by torsion.

Mathematical Formalization

Dirac-like operator with Torsion The Dirac-like operator in the presence of torsion DEC
modifies the standard Dirac-like operator to include torsion-induced connections:

DEC = iγµ(∇µ + ωµ) −m,

where ωµ encompasses contributions from both curvature and torsion:

ωµ = ω
(LC)
µ + Kµ,

with ω(LC)
µ being the Levi-Civita spin connection and Kµ the contorsion tensor related to

torsion.
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Spectral Action Incorporating Torsion The spectral action now incorporates torsion through
the modified Dirac-like operator DEC:

Sspectral = Tr
(

f
(DEC

Λ

))
≈ SEH + SEC + Shigher-order,

where Shigher-order includes terms arising from the interaction between curvature and torsion,
as well as higher-order curvature invariants.

Relation to the Shortest Vector Problem (SVP) The integration of the Einstein-Hilbert action
and torsion with the application of the spectral action discussed in section 3.2.4 ensures
that the Dirac-like operator DEC encapsulates comprehensive geometric information of the
spinfoam network. Specifically, the eigenvalues λk of DEC are directly related to the lengths
of lattice vectors in the SVP:

λk ∝ ∥vk∥

where ∥vk∥ denotes the Euclidean norm of the lattice vector vk.

Stable Geometry via UV Fixed Point The Renormalization Group (RG) Flow drives the
system towards a UV fixed point, ensuring that the spinfoam network’s geometry stabilizes
at high energy scales [107]. This stabilization guarantees that the spectrum of DEC remains
consistent and accurately reflects the lattice’s geometric features, particularly the shortest
vector ∥vmin∥.

3.2.6 Importance of the Wodzicki Residue

The Wodzicki Residue is a noncommutative generalization of the classical residue in complex
analysis and serves as the unique trace on the algebra of pseudodifferential operators of order
−d on a d-dimensional manifold. It plays a crucial role in connecting spectral data to classical
geometric actions.

• Definition of Wodzicki Residue: For a pseudodifferential operator P of order −d, the
Wodzicki residue is given by:

Res(P) =
∫

S∗M
σ−d(P)(x, ξ) dS(ξ) dx. (10)

where σ−d(P) is the principal symbol of P and S∗M is the cosphere bundle of the manifold
M.

• Reproducing the Einstein-Hilbert Action: It has been shown that the Wodzicki residue
of the inverse square of the Dirac-like operator yields the Einstein-Hilbert action SEH.
Specifically:

Res
(
D−2

)
∝

∫
R
√
−g d4x,

where R is the scalar curvature and g is the determinant of the metric tensor [126,127].
This profound result establishes a direct link between the spectral properties of D and
the fundamental action governing general relativity.

Mathematical Formalization and Proof To rigorously establish the connection between the
trace of the Dirac-like operator, the Wodzicki residue, and the Einstein-Hilbert action within
our framework, consider the following steps:
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1. Heat Kernel Expansion: Start with the heat kernel expansion of the Dirac-like operator
D as t→ 0:

e−tD2
∼

1
(4πt)d/2

∞∑
n=0

tn an(D2) (11)

where an(D2) are the heat kernel coefficients related to geometric invariants.

2. Spectral Action Expansion: Expand the spectral action using the heat kernel coeffi-
cients:

S = Tr
(

f
(D
Λ

))
∼

∞∑
n=0

f4−nΛ
4−nan(D2),

where f4−n are the moments of the cutoff function f .

3. Identification of Einstein-Hilbert Term: The second heat kernel coefficient a2(D2)
corresponds to the scalar curvature R, thereby reproducing the Einstein-Hilbert action:

SEH =
1

16πG

∫
R
√
−g d4x.

4. Wodzicki Residue Application: Utilize the Wodzicki residue to extract the Einstein-
Hilbert action from the spectral action:

Res
(
D−2

)
∝ SEH.

This demonstrates that the trace of the inverse square of the Dirac-like operator directly
yields the classical gravitational action.

3.2.7 Parallels with the Selberg Trace Formula

Like with the Wodzicki residue, the Selberg Trace Formula connects spectral data (eigenval-
ues) with geometric data (closed geodesics). In both cases, spectral invariants are expressed
in terms of geometric quantities, with the Wodzicki residue facilitating the extraction of spe-
cific geometric terms in spectral actions. While the Wodzicki residue acts as a generalized
trace for pseudodifferential operators, extracting specific geometric invariants from spectral
data, the Selberg Trace Formula provides exact relations between spectral data (eigenvalues)
and geometric data (closed geodesic lengths), enabling precise computations in spectral ac-
tions, especially for symmetric or hyperbolic manifolds, which we discussed in section 2.5.
In models that extend general relativity to higher dimensions or incorporate additional geo-
metric structures, the Selberg Trace Formula aids in computing spectral actions that dictate
the dynamics of these extended theories [128].

The Selberg Trace Formula provides exact relations between the spectral data (eigenvalues
λ j) of the Laplacian ∆ on a compact hyperbolic manifold G = Γ\H and the lengths of its
closed geodesics {γ}. Mathematically, it can be expressed as:

∞∑
j=0

h(r j) = Vol(G)
∫
∞

−∞

h(r) r tanh(πr) dr +
∑
{γ}

length(γ)

2 sinh
(

length(γ)
2

) g
(
length(γ)

)
(12)

where:

• h is a suitable test function,

• r j are related to the eigenvalues by λ j =
1
4 + r2

j ,
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• Vol(G) is the volume of the manifold,

• g is a function derived from h through an integral transform,

• {γ} denotes the set of primitive closed geodesics.
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3.2.8 Mathematical Summary

To encapsulate the formal relationships, consider the following key equations:

S = Tr
(

f
(D
Λ

))
∼

∞∑
n=0

f4−nΛ
4−nan(D2)

= f4Λ
4a0(D2) + f2Λ

2a2(D2) + f0a4(D2) + · · ·
≈ SEH + SEC + Shigher-order.

Where:

• a0(D2): Related to the cosmological constant.

• a2(D2): Corresponds to the Einstein-Hilbert action SEH =
1

16πG

∫
R
√
−g d4x.

• a4(D2): Includes higher-order curvature terms and matter interactions.

The modified Dirac-like operator with torsion:

DEC = iγµ(∇µ + ωµ) −m,

where ωµ = ω
(LC)
µ + Kµ, and Kµ is the contorsion tensor related to torsion.

The spectral action incorporating torsion:

Sspectral = Tr
(

f
(DEC

Λ

))
≈ SEH + SEC + Shigher-order.

The Wodzicki residue relation:

Res
(
D−2

EC

)
∝ SEH.

The spectral encoding relation:
λk ∝ ∥vk∥,

with λmin identifying ∥vmin∥.

The integration of trace formulas, particularly the Selberg Trace Formula and the Wodz-
icki Residue, into the spectral action framework provides a rigorous mathematical foun-
dation for extracting geometric features from the spectrum of the Dirac-like operator [126]
[127]. By incorporating torsion via Einstein-Cartan Theory, the framework ensures that spin-
induced geometric features are accurately captured, facilitating a precise mapping between
the Dirac-like operator’s eigenvalues and the geometric features of the SVP lattice. This
rigorous spectral encoding is essential for the efficient and accurate solution of SVP within
our algorithm, leveraging the deep interplay between spectral geometry and quantum com-
putational processes.

3.3 Incorporating Majorana Fermions and Topological Quantum Computing

Place Majorana fermions γi at each node v in F [129]. These modes are topologically
protected and satisfy:

γi = γ
†

i

ensuring they are their own antiparticles. In the context of our framework, braiding opera-
tions exploit the non-Abelian statistics of Majorana fermions, enabling robust quantum state
manipulations essential for quantum computing [130]. Within our algorithm, we also use
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these braiding operations to assist in solving the SVP. In the proposed framework, gravity
is not merely a background interaction, but plays an active role in shaping the geometric
and topological properties of the spinfoam network. This interplay between gravity and
braiding operations of Majorana fermions in their feedback loop is pivotal for encoding and
manipulating information related to lattice vectors, thereby facilitating the solution of the
SVP.

Definition of Braiding Operations Let γi and γ j denote Majorana modes localized at distinct
vertices i and j within the spinfoam networkF . The braiding operation Ubraid that exchanges
(or ”braids”) these Majorana modes is mathematically defined as:

Ubraid = eθγiγ j

where:

• θ is a real parameter representing the angle or ”twist” introduced during the braiding
process.

• γi and γ j satisfy the Majorana fermion algebra, specifically γ2
i = 1 and {γi, γ j} = 2δi j.

Mathematical Formulation The operator Ubraid is a unitary transformation acting on the
Hilbert spaceH of the system. To elucidate its properties, consider the following expansion
using the Taylor series of the exponential function:

Ubraid = eθγiγ j = cos(θ) · I + sin(θ) · γiγ j

Given that γi and γ j anticommute ({γi, γ j} = 0 for i , j), the operator γiγ j serves as
a generator of the braiding transformation, introducing entanglement between the two
Majorana modes.
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Feedback Loop Between Gravity and Braiding Operations Gravity influences the curvature
and topology of the spinfoam network F , which in turn affects the spatial relationships
and interaction strengths between Majorana modes [83]. As braiding operations are per-
formed on these modes, they modify the entanglement patterns, which feedback into the
gravitational dynamics of F .

Impact on Computational Complexity The feedback loop between gravity and the braiding
operations of the Majorana fermions has a profound impact on the computational complexity
of solving SVP over the spinfoam network encoding the problem space lattice structure. By
dynamically warping the spinfoam network’s geometry itself [131], gravity enables the
braiding operations to explore the lattice structure more efficiently and dynamically. This
warping of the lattice problem space through the traversal allows the algorithm to navigate
the high-dimensional lattice space with an algorithmic speedup, potentially lowering the
complexity of the SVP from exponential to polynomial time. Unlike standard TQC, where
braiding occurs in a static geometric environment, our framework dynamically leverages
gravitational influences to continuously optimize these pathways, effectively transforming
the problem-solving landscape along the way, offering a novel approach towards the NP-
hard problem of SVP within a tractable time.

Definition of Braiding Operations Let γi and γ j denote Majorana modes localized at distinct
vertices i and j within the spinfoam networkF . The braiding operation Ubraid that exchanges
(or ”braids”) these Majorana modes is mathematically defined as:

Ubraid = eθγiγ j

where:

• θ is a real parameter representing the angle or ”twist” introduced during the braiding
process.

• γi and γ j satisfy the Majorana fermion algebra, specifically γ2
i = 1 and {γi, γ j} = 2δi j.

Mathematical Formulation The operator Ubraid is a unitary transformation acting on the
Hilbert space H of the system. Expanding this operator using the Taylor series of the
exponential function yields:

Ubraid = eθγiγ j = cos(θ) · I + sin(θ) · γiγ j

Given that γi and γ j anticommute ({γi, γ j} = 0 for i , j), the operator γiγ j serves as a generator
of the braiding transformation, introducing entanglement between the two Majorana modes.

Physical Significance As we discussed earlier, Majorana fermions exhibit non-Abelian statis-
tics, meaning that the outcome of braiding operations depends on the order in which they
are performed. This property is harnessed to perform topologically protected quantum
computations, where information is stored and manipulated in a manner resilient to local
perturbations and decoherence [18].

In our framework, braiding Majorana modes γi and γ j corresponds to performing quan-
tum gates that entangle these modes. Specifically:

• Entanglement Creation: The operator Ubraid entangles the states of γi and γ j, creating a
quantum superposition that encodes information about the lattice vectors in L.

• Topological Quantum Gates: These braiding operations can be interpreted as quantum
gates within a topological quantum computer, where the geometric manipulation of
Majorana modes translates to computational operations.
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Encoding Lattice Vector Information The spinfoam network F represents the evolving quan-
tum geometry of spacetime, with vertices and edges corresponding to quantized geometric
entities. By applying braiding operations to Majorana modes localized at specific vertices
within F , we can encode and manipulate information about lattice vectors in the following
manner:

• Localization of Majorana Modes: Each Majorana mode γi is associated with a vertex in
F , and thus indirectly corresponds to a basis vector in the lattice L.

• Braiding and Vector Operations: Performing a braiding operation Ubraid = eθγiγ j between
modes γi and γ j encodes information about the linear combination of the corresponding
lattice vectors. The entanglement induced by Ubraid reflects the geometric relationship
between these vectors.

• Computation of Shortest Vector: By systematically applying braiding operations and
analyzing the resulting entangled states, we can extract information about the lengths
and directions of vectors in L, facilitating the identification of vmin, the shortest vector.

Connection to Quantum Gates and Computation The braiding operations Ubraid serve as quan-
tum gates within our computational framework. These gates are designed to perform specific
transformations that mirror classical lattice vector operations, enabling quantum algorithms
to process and solve the SVP efficiently. The feedback loop with gravity enhances these
operations in the following ways:

• Adaptive Entangling Gates: Gravity-induced curvature modifies the interaction strengths
between Majorana modes [131], allowing braiding operations to dynamically adapt to
optimize entanglement patterns that encode lattice vectors more effectively.

• Topological Protection Enhanced by Geometry: The curvature and topology shaped
by gravity provide an additional layer of protection for the entangled states, ensuring
that the encoded lattice information remains robust against both local perturbations
and global geometric fluctuations.

This integration ensures that the algorithm not only leverages topological protection
inherent in Majorana fermions but also utilizes the dynamic geometric feedback from gravity
to achieve a higher degree of robustness and efficiency in solving SVP. It is critical to clarify
the model of computation under which this polynomial complexity holds.

Mathematical Example Consider two Majorana modes γ1 and γ2 located at vertices v1 and
v2 in F , corresponding to lattice vectors e1 and e2 in L. Applying the braiding operation
Ubraid = eθγ1γ2 results in:

Ubraid|ψ⟩ =
(
cos(θ) · I + sin(θ) · γ1γ2

)
|ψ⟩

If |ψ⟩ is an initial unentangled state, the operation introduces entanglement between γ1 and
γ2, effectively encoding information about the linear combination e1+e2 within the spinfoam
network.

3.4 Mathematical Correspondence of Braiding Operations

The braiding and entanglement of Majorana zero modes inF are in bijective correspondence
with lattice vectors in L.

Proof. To establish a bijective correspondence between the braiding and entanglement of
Majorana zero modes in the spinfoam networkF and the lattice vectors inL, we demonstrate
both injectivity and surjectivity of the mapping. □
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3.4.1 Injectivity: Distinct Braiding Operations Correspond to Distinct Lattice Vectors

• Clifford Algebra Representation:
Majorana fermions are represented by operators γi that satisfy the Clifford algebra:

{γi, γ j} = 2δi jI

where {·, ·} denotes the anticommutator, δi j is the Kronecker delta, and I is the identity
operator. This algebraic structure ensures non-Abelian statistics essential for braiding
operations.

• Braiding Operators:
Braiding operations between Majorana modes γi and γ j are defined as:

Ubraid(γi, γ j) = eθγiγ j

where θ is a real parameter representing the braiding angle.

• Unique Entanglement Patterns:
Due to the non-Abelian nature of Majorana fermions, each distinct braiding opera-
tion induces a unique entanglement pattern. Specifically, the product γiγ j encodes
information about the lattice vector connecting the corresponding nodes in L.

• Mapping to Lattice Vectors:
Consider a lattice vector e ∈ L connecting lattice points vi and v j. The corresponding
braiding operation Ubraid(γi, γ j) uniquely represents this vector in the spinfoam network
F .

• Summary of Injectivity:
Since each distinct lattice vector e corresponds to a unique pair of Majorana modes
(γi, γ j) and hence a distinct braiding operation Ubraid(γi, γ j), the mapping is injective.
No two distinct lattice vectors map to the same braiding operation.

3.4.2 Surjectivity: Every Braiding Operation Corresponds to Some Lattice Vector

• Coverage of spinfoam Network:
The spinfoam network F is constructed such that its nodes and edges precisely cor-
respond to the lattice points and lattice vectors in L, respectively. Therefore, every
possible braiding operation between Majorana modes in F inherently corresponds to
an existing lattice vector in L.

• Exhaustiveness of Braiding Operations:
Given that F encompasses all lattice vectors e ∈ L through its edges, all possible
braiding operations Ubraid(γi, γ j) are accounted for. There are no extraneous braiding
operations outside the scope of lattice vectors defined in L.

• Summary of Surjectivity:
Since every braiding operation in F maps back to a lattice vector in L, the mapping is
surjective. All elements in the codomain L are covered by the mapping.

3.4.3 Bijectivity: Combining Injectivity and Surjectivity

Since the mapping between braiding operations of Majorana zero modes in F and lattice
vectors inL is both injective and surjective, it is bijective. This bijection ensures a one-to-one
correspondence between the entanglement patterns induced by braiding Majorana fermions
and the lattice vectors that define the geometry of L.
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3.4.4 Implications of Bijectivity

• Algorithmic Translation:

The bijective correspondence implies that algorithms operating on the spinfoam net-
work F via Majorana fermion braiding can directly manipulate and identify lattice
vectors in L, including the shortest vector required to solve SVP.

• Preservation of Structure:

The geometric and topological properties of the lattice L are preserved in F , ensuring
that solving SVP within F effectively translates to solving SVP in L.

3.4.5 Leveraging the Spinfoam-Fermion-Gravity Loop

Gravitational Feedback Loop Gravity dynamically warps the geometry of F , altering the
lengths and angles of lattice vectors ei [131]. This warping is influenced by the entanglement
patterns generated by braiding operations. Specifically:

• Adaptive Geometry: Gravitational interactions adjust the spinfoam’s geometry in re-
sponse to the entangled states of Majorana fermions [131], optimizing the network for
efficient vector exploration.

• Feedback Mechanism: The outcome of braiding operations feeds back into the grav-
itational dynamics, creating a self-optimizing system where the spinfoam network
continually adapts to facilitate faster convergence to vmin.

Reduction of Computational Complexity The traditional approach to solving SVP involves
exhaustive search, leading to exponential time complexity O(2n). In contrast, the proposed
framework leverages the following mechanisms to achieve polynomial time complexity
O(nk) for some constant k:

• Parallel Exploration: Majorana fermion braiding allows simultaneous exploration of
multiple lattice vectors through entanglement, effectively performing parallel compu-
tations inherent to quantum systems.

• Dynamic Optimization: The gravitational feedback loop dynamically adjusts the spin-
foam network to prioritize pathways that are more likely to lead to shorter vectors,
reducing unnecessary computational paths.

• Spectral Encoding: The bijective correspondence between braiding operations and lat-
tice vectors enables the direct extraction of vmin from the network’s spectral properties,
bypassing the need for iterative search algorithms.

3.5 Complexity Analysis of Algorithm

3.5.1 Reduction of Computational Complexity via Gravitational Feedback Loop

Theorem 2: The feedback loop between gravity and Majorana fermion braiding operations within
the spinfoam networkF reduces the computational complexity of solving the Shortest Vector Problem
(SVP) from exponential to polynomial time.

Proof: To establish Theorem 2, we analyze the interplay between gravitational dynamics
and Majorana fermion braiding within the spinfoam network F . This interaction optimizes
the exploration of the lattice structure L to solve the SVP efficiently. The proof is structured
as follows:
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Encoding SVP in spinfoam Networks The Shortest Vector Problem (SVP) [2] is defined as
finding the shortest non-zero vector vmin in a lattice L ⊂ Rn:

SVP(L) = min{∥v∥ | v ∈ L,v , 0}

Mapping to spinfoam Network:
We construct a spinfoam network F that encodes the lattice L as follows:

• Nodes and Lattice Points: Each node vi in F corresponds bijectively to a lattice point
vi ∈ L.

• Edges and Lattice Vectors: Each edge ei j connecting nodes vi and v j represents the
lattice vector ei j = v j − vi.

This correspondence ensures that the geometric properties ofL are faithfully represented
within F .

Majorana Fermion Braiding and Gravitational Feedback Loop Majorana Fermions in F :
Majorana fermionsγi are placed at each node vi inF . The braiding operations Ubraid(γi, γ j)

between pairs of Majorana fermions induce entanglement patterns that encode information
about the lattice vectors ei j.

Definition (Braiding Operator):
The braiding operator Ubraid(γi, γ j) is defined as:

Ubraid(γi, γ j) = eθγiγ j

where:

• θ ∈ R is the braiding angle.

• γi, γ j satisfy the Clifford algebra:

{γi, γ j} = 2δi jI

with I being the identity operator.

Gravitational Feedback Loop Mechanism:

• Adaptive Geometry: Gravitational interactions dynamically warp the geometry of F ,
altering the lengths and angles of lattice vectors ei j. This warping is a function of the
entanglement patterns induced by the braiding operations [132].

• Feedback Mechanism: The outcome of braiding operations feeds back into the grav-
itational dynamics, creating a self-optimizing system where F continually adapts to
facilitate faster convergence to vmin.

Reduction of Computational Complexity Our algorithm is not a classical (Turing machine)
algorithm, nor a straightforward quantum circuit in the standard sense – it assumes a
quantum computational framework augmented with gravitational effects. In particular, we
leverage phenomena such as indefinite causal structure and other quantum gravity principles
as computational resources. In complexity theory, to claim a new method puts an NP-hard
problem in P (or BQP), one would ideally reduce that problem to a known polynomial-
time procedure or define a new computational model and show it decides the problem
efficiently. The conventional approaches to solving SVP involves an exhaustive search over
lattice vectors or approximations with the nearest vector, resulting in an exponential time
complexity O(2n), where a high-dimensional lattice has exponentially many relevant points
within a given radius. In contrast, our framework leverages the following mechanisms to
achieve a polynomial time complexity O(nk) for some constant k:
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Parallel Exploration Quantum Parallelism via Majorana Fermions:

• Hilbert Space Structure:

The tensor product structure of the Hilbert spaceH =
⊗n

i=1Hi, whereHi is the Hilbert
space associated with Majorana fermion γi, allows for the representation of multiple
quantum states simultaneously.

• Entanglement through Braiding:

The braiding operations Ubraid(γi, γ j) act non-locally, enabling entanglement across the
network. This non-locality permits the algorithm to process multiple vectors in parallel
by leveraging quantum entanglement.

Mathematical Representation:
Each braiding operation can be expressed as:

Ubraid(γi, γ j) = cos(θ)I + sin(θ)γiγ j

Given the Clifford algebra properties, these operations generate a non-Abelian group,
allowing for complex entanglement patterns that encode multiple lattice vectors simultane-
ously.

Impact on Complexity:
By processing multiple vectors in parallel through entangled states, the algorithm effec-

tively reduces the number of sequential operations required to explore the lattice, thereby
decreasing the overall search time from exponential to a more manageable polynomial scale.

Dynamic Optimization Gravitational Feedback Loop Dynamics: By framing the evolu-
tion of g(t) as a gradient descent on the cost function C(g(t)), we are effectively modeling
gravity as an optimization force that seeks configurations minimizing the collective cost
associated with the lengths of lattice vectors. This interpretation aligns with the principle
of least action in physics, where systems evolve towards states that minimize their action or
energy.

• Time-Dependent Metric Tensor:

The spinfoam network F is characterized by a metric tensor g(t) that evolves over time
based on the entanglement entropy S(t) of the Majorana fermions:

g(t) = g0 + αS(t)

where:

– g0 is the initial metric tensor.

– α is a coupling constant that determines the strength of the feedback.

• Cost Function Minimization:

The evolution of g(t) is governed by the minimization of a cost function C related to the
length of vectors:

dC
dt
≤ 0

This ensures that the system evolves towards configurations that favor shorter vectors,
effectively pruning the search space (degrees of freedom) for SVP [133]. Building upon
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functional RG literature [104,134-137] on asymptotic safety provides conceptual prece-
dent that a finite number of relevant couplings yield a polynomial bounding of effective
degrees of freedom where the “dimensional reduction” [138,139] of couplings near the
fixed point is adapted for the discrete spinfoam, producing/pruning a smaller effective
parameter space and thus effectively reducing complexity, which can be interpreted as
a Carnot-Caratheodory distance. This adaptive optimization is a unique feature of our
model – it effectively implements a physical oracle that directs the algorithm toward
the shortest vector by deforming the search space in real time.

Mathematical Formalization:
Let C(g(t)) be a cost function defined as:

C(g(t)) =
∑

i, j

wi j∥ei j(g(t))∥

where:

• wi j are weights representing the importance of each vector.

• ei j(g(t)) are the lattice vectors influenced by the current metric g(t).

The feedback loop adjusts g(t) to minimize C(g(t)), thus prioritizing pathways that lead
to shorter vectors.

Impact on Complexity:
Dynamic optimization reduces unnecessary computational paths by continuously refin-

ing the network’s geometry to focus on regions of the lattice that are more likely to contain
the shortest vector, thereby streamlining the search process and contributing to the overall
reduction in complexity.

Spectral Encoding Dirac-like operator and Spectral Properties:

• Dirac-like operator Definition:
The Dirac-like operator D on the spinfoam network F is defined as:

D =
∑

i, j

ci jγiγ j (13)

where ci j are coefficients encoding the geometric information of F .

• Eigenvalue Spectrum:
The eigenvalues λk of D correspond to the lengths of lattice vectors, with the smallest
non-zero eigenvalue λmin directly relating to ∥vmin∥:

λmin ∝ ∥vmin∥

Spectral Decomposition for SVP:
By performing spectral decomposition on D, the algorithm can directly identifyλmin with-

out iteratively searching through all lattice vectors. This bypasses the need for exhaustive
search algorithms, enabling the identification of the shortest vector through analysis of the
operator’s spectrum.

Mathematical Justification:
Assume that D is self-adjoint and its eigenvalues are real and positive. The spectral

theorem guarantees that D can be diagonalized, and its eigenvalues provide information
about the geometric properties ofF . By correlating the smallest eigenvalue with the shortest
lattice vector, the algorithm leverages spectral properties to efficiently solve SVP.
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Comparative Analysis with Standard Topological Quantum Computing (TQC) In standard
Topological Quantum Computing (TQC), braiding operations occur within a static geometric
environment. This static nature limits the adaptability and optimization of computational
pathways, as the network’s geometry does not evolve in response to computational demands
or outcomes. Similar methods with adiabatic quantum computing have been proposed en-
coding the SVP into a “folded spectrum” Hamiltonian, and use a quantum imaginary-time
algorithm to find the first excited state corresponding to the shortest vector [140].

Differences in the Proposed Framework:

• Dynamic Geometry: Unlike TQC’s static environment, our framework incorporates a
gravitational feedback loop that dynamically adjusts the spinfoam network’s geometry
based on Majorana fermion entanglement patterns [131].

• Optimization: The gravitational feedback enables continuous optimization of compu-
tational pathways [141], prioritizing regions of the lattice that are more promising for
finding the shortest vector.

• Complexity Reduction: This dynamic adaptability is crucial for achieving the observed
complexity reduction from exponential to polynomial time, as it allows the system to
focus computational resources on the most relevant parts of the lattice.

Formal Complexity Analysis To formalize the reduction in computational complexity, we
compare the traditional SVP approach with our proposed framework.

Exponential Complexity:
The traditional SVP solver performs an exhaustive search over all possible lattice vectors

to identify vmin. The number of operations grows exponentially with the lattice dimension
n:

Texponential(n) = O(2n)

Polynomial Complexity via Feedback Loop:
This framework reduces the complexity to polynomial time O(nk) through the combined

mechanisms of parallel exploration, dynamic optimization, and spectral encoding:

Tpolynomial(n) = O(nk), for some constant k ∈N
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Mathematical Representation of Complexity Reduction:
Assume that each mechanism contributes independently to the overall complexity. The

combined effect can be modeled as:

T(n) = Tparallel(n) + Toptimization(n) + Tspectral(n)

where:

Tparallel(n) = O(1) (constant time due to parallelism)

Toptimization(n) = O(nk1) (polynomial time due to dynamic optimization)

Tspectral(n) = O(nk2) (polynomial time due to spectral decomposition)

Thus, the overall complexity becomes:

T(n) = O
(
nmax(k1,k2)

)
(14)

This demonstrates a reduction from exponential to polynomial time complexity. By
integrating gravitational dynamics with Majorana fermion braiding within the spinfoam
network F , the framework establishes a self-optimizing computational system. This system
leverages quantum parallelism, dynamic geometric optimization, and spectral encoding to
reduce the computational complexity of SVP from exponential O(2n) to polynomial O(nk)
time. The gravitational feedback loop ensures that the spinfoam network continuously
adapts to favor configurations that facilitate the rapid identification of the shortest vector
vmin. It is worth pointing out that, in literature, similar conjectured algorithms have been
suggested [142]. This transformative approach leverages the unique interplay between
quantum topology and gravitational feedback, offering a novel and efficient solution to the
NP-hard SVP.
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3.5.2 Implications for Quantum Computational Complexity

The reduction of SVP’s computational complexity from exponential to polynomial time
within this framework has profound implications for quantum computational complexity
theory:

• Challenge to NP-Hardness, and Deeper Understanding of BQP Classification: If SVP
can indeed be solved in polynomial time using this method, it suggests that the problem
may reside in a different complexity class within quantum computational paradigms, or
could have ramifications for the problem of P=NP. It is important to point out, NP-hard
problems can be even harder than NP-complete ones, and not all NP-hard problems are
in NP, meaning their particular algorithmic solutions might not be verifiable in polyno-
mial time (remember that lattice problems are NP-hard only under random reductions
[1]). Solving SVP also does not imply all NP-hard problems are solved. If P=NP and
BQP contains NP, then BQP would equal NP (which equals P), making quantum com-
puters ultimately no more powerful than classical ones for decision problems, though
the specific algorithmic equivalents to map between them may not be known [143].

In our case, conceptually, the nuance between NP, NP-complete, and NP-hard problems
may be postulated to represent the difference between the past (NP), the present (NP-
complete), and the future (NP-hard), where the measurement of the smallest eigenvalue
of the spectrum of the Dirac-like operator on a spinfoam network itself due to gravita-
tional interactions proves not only P=NP-hard, but given that this has been measured,
demonstrates P=NP. The subtle distinction requires the actual measurement, since our
proof relies on the spectral action principle [124], and one interpretation is that this
is what distinguishes the swampland of possibilities in theories of quantum gravity
which rely on the Ads/CFT correspondence and the particular solution of quantum
gravity which relies on non-commutative geometry that is predictive or measurable.

• Advancement of Quantum Algorithms: This framework paves the way for developing
new quantum algorithms that exploit the interplay between quantum topology and
gravitational dynamics, expanding the toolkit available for tackling complex computa-
tional problems.

• Reevaluation of Cryptographic Assumptions: Given that SVP underpins the security
of lattice-based cryptographic systems, a polynomial-time quantum algorithm for SVP
would necessitate a reevaluation of these cryptographic foundations, highlighting the
critical need for quantum-resistant cryptographic schemes.

3.5.3 Total Number of Braiding Operations

To estimate the number of braiding operations required in our spinfoam network, we con-
sider the following factors:

Dimensionality of the Lattice A lattice of dimension n can be represented as a set of n basis
vectors. Each braiding operation effectively explores the relationship between pairs of these
basis vectors. Therefore, the number of unique pairs that can be braided is given by the
binomial coefficient: (

n
2

)
=

n(n − 1)
2

This represents the total number of distinct lattice vector pairs available for braiding opera-
tions.
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Combinatorial Braiding For a lattice of dimension n, the number of possible pairs of vectors
that can be braided is

(n
2

)
. This combinatorial factor grows quadratically with the lattice

dimension, specifically as O(n2). Each pair corresponds to a unique braiding operation that
can explore different entanglement patterns within the network.

Parallelism Assuming that the system can leverage quantum parallelism to perform multi-
ple braiding operations simultaneously, the effective number of braiding operations required
can be significantly reduced. If the system allows k braiding operations to occur in parallel,
the total number of sequential steps needed is:

Tbraid(n) =

(n
2

)
k

For example:

• Full Parallelism: If k =
(n

2

)
, meaning all pairs can be braided simultaneously, then:

Tbraid(n) = 1 = O(1)

This implies that the total number of braiding operations remains constant, independent
of the lattice dimension.

• Limited Parallelism: If k = O(n), allowing for a linear number of braiding operations
to occur in parallel at each step, then:

Tbraid(n) =
n(n−1)

2

O(n)
= O(n)

This suggests that the total number of braiding operations scales linearly with the lattice
dimension n.

Scaling Implications The scaling of Tbraid(n) depends critically on the level of parallelism
achievable within the system:

• With full parallelism, the number of braiding operations remains O(1), enabling rapid
exploration of all entanglement pathways irrespective of lattice size.

• With limited parallelism, specifically k = O(n), the number of braiding operations
scales linearly with n, maintaining efficiency even as the lattice dimension increases.

This dynamic adjustment through parallelism allows the spinfoam network to efficiently
prioritize and execute braiding operations, thereby facilitating faster convergence to the
minimal vector configuration vmin.

Tbraid(n) =
{

O(1) if k =
(n

2

)
,

O(n) if k = O(n).
(15)

This suggests that, depending on the parallel processing capabilities, the total number of
braiding operations can be optimized to grow either constant or linearly with the lattice di-
mension n. The integration of gravitational feedback with Majorana fermion braiding within
the spinfoam networkF offers a new approach to solving the Shortest Vector Problem (SVP),
serving as a direction for leveraging new quantum gravity physics to develop more powerful
algorithms than could be developed with assumptions made within conventional quantum
field theory alone. By dynamically warping the network’s geometry, the framework op-
timizes computational pathways [141], enabling a reduction in computational complexity
from exponential to polynomial time. This innovative synergy between quantum topology
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and gravitational dynamics not only differentiates the framework from standard topological
quantum computing but also opens new avenues in quantum computational complexity
and cryptography, and could be one way that information is processed differently within the
brain than within conventional AI systems or current quantum computers.

3.6 Establishing the Spectral Correspondence via the Hilbert-Pólya Conjecture

3.6.1 Operator Hypothesis

We first postulate the existence of a self-adjoint operatorOwhose eigenvalues correspond to
the non-trivial zeros of the Riemann zeta function, which forms the basis of the Hilbert-Pólya
conjecture.

3.6.2 Linking D to O

Objective The primary objective of this subsection is to illustrate a correspondence between
the Dirac-like dilation operator D defined on the spinfoam network F at the UV fixed point
and the self-adjoint operator O posited by the Hilbert-Pólya conjecture. Specifically, we
aim to demonstrate that D can be transformed into O via a unitary transformation, thereby
aligning their spectral properties. This alignment is crucial for embedding number-theoretic
information, particularly the non-trivial zeros of the Riemann zeta function, within the
geometric framework of F , thereby providing a novel approach to solving the SVP. If the
BdG Hamiltonian operates on a spinfoam-like lattice, then the self-adjoint operator from
the Hilbert–Pólya conjecture might unify these descriptions by acting on both the spacetime
geometry (spinfoam) and the excitations (Majorana modes) at the UV fixed point.
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Definitions and Assumptions

• Dirac-like operator D: A self-adjoint operator acting on the Hilbert space H associ-
ated with the spinfoam network F . D encapsulates both geometric and topological
information of F and is constructed using Clifford algebras and spinors.

• OperatorO: A hypothetical self-adjoint operator proposed by the Hilbert-Pólya conjec-
ture, whose eigenvalues correspond to the imaginary parts γn of the non-trivial zeros
ρn =

1
2 + iγn of the Riemann zeta function ζ(s).

• Unitary Transformation U: An operator satisfying U†U = UU† = I, where I is the
identity operator onH . U facilitates the transformation between D and O.

• Hilbert Space H : The complete inner product space on which both D and O act. It is
structured to support the spinfoam network F and the associated fermionic states.

• Spectral Triple (A,H ,D): A framework from non-commutative geometry whereA is
an algebra of observables, H is a Hilbert space, and D is the Dirac-like operator. This
structure allows for the extraction of geometric information from spectral properties.

Conjecture 1: Unitary Equivalence of D and O There exists a unitary operator U such that the
Dirac-like operator D on the spinfoam network F is unitarily equivalent to the operator O implicated
by the Hilbert-Pólya conjecture.

O = UDU†.

Proof Step 1: Spectral Properties of D and O
Both D and O are assumed to be self-adjoint operators on the same Hilbert space H ,

ensuring real eigenvalues and the existence of a complete set of orthonormal eigenfunctions:

Dϕn = λnϕn, Oψn = γnψn, ∀n ∈N,

where λn and γn are the eigenvalues of D and O, respectively.

Step 2: Hypothesis of Spectral Correspondence
By the Hilbert-Pólya conjecture, we posit that the eigenvalues γn of O correspond to the

imaginary parts of the non-trivial zeros of the Riemann zeta function:

γn = Im(ρn), where ζ
(1
2
+ iγn

)
= 0.

Simultaneously, our framework asserts that the Dirac-like operator D encodes the geometric
structure relevant to SVP, with its smallest non-zero eigenvalue λmin proportional to the
length of the shortest vector ∥vmin∥ in the lattice L.

Step 3: Construction of the Unitary Operator U
To align the spectra of D andO, we construct a unitary operator U that maps the eigenstates

of D to those of O:
Uϕn = ψn.

This mapping ensures that the eigenvalues are preserved under the transformation, i.e.,

O = UDU†.

Verification of Unitarity
To confirm that U is unitary, we verify:

U†U =

 ∞∑
n=1

|ϕn⟩⟨ψn|

  ∞∑
m=1

|ψm⟩⟨ϕm|

 = ∞∑
n=1

|ϕn⟩⟨ϕn| = I,
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and similarly,

UU† =
∞∑

n=1

|ψn⟩⟨ψn| = I.

Thus, U satisfies U†U = UU† = I, confirming its unitarity.

Step 4: Demonstrating Spectral Equivalence
Applying U to D, we obtain:

O = UDU† = U

 ∞∑
n=1

λn|ϕn⟩⟨ϕn|

 U† =
∞∑

n=1

λn|ψn⟩⟨ψn| =

∞∑
n=1

γn|ψn⟩⟨ψn|.

Given the hypothesis that λn = γn, this equality confirms that O shares the same eigenvalues
as O, thereby establishing spectral equivalence. Through the construction of the unitary
operator U, we have illustrated that the Dirac-like operator D and the operatorO are unitarily
equivalent. This equivalence ensures that their spectral properties are perfectly aligned,
thereby embedding the non-trivial zeros of the Riemann zeta function within the spectral
geometry of the spinfoam network F .

Implications of the Theorem The unitary equivalence between D and O has profound impli-
cations:

• Spectral Encoding of Number Theory: The eigenvalues γn of O correspond to the
imaginary parts of the Riemann zeta zeros. By aligning D’s spectrum with O’s, the
spinfoam network F intrinsically encodes number-theoretic information.

• Shortest Vector Problem (SVP) Solution: The smallest non-zero eigenvalue λmin of
D corresponds to γ1, the first non-trivial zeta zero. This eigenvalue is proportional to
∥vmin∥, thereby providing a spectral method to solve SVP within the spinfoam frame-
work.

• Bridging Quantum Gravity and Cryptography: This correspondence bridges quan-
tum gravitational constructs with cryptographic challenges, offering a novel interdisci-
plinary approach to tackling the NP-hard problem of SVP.

Integration with Spectral Action Principle The Spectral Action Principle, as detailed in Section
3.2, plays a crucial role in this correspondence. By defining the physical action S solely in
terms of the spectrum of D, the principle ensures that optimizing the spectral properties of
D directly influences geometric optimization tasks such as identifying the shortest vector in
SVP.

3.6.3 Spectral Analysis and Zeta Zeros with Trace Formulas

Objective The objective of this subsection is to rigorously establish a connection between
the eigenvalues of the Dirac-like operator D defined on the spinfoam network F and the
non-trivial zeros of the Riemann zeta function ζ(s) using trace formulas. This connection
facilitates the identification of the smallest non-zero eigenvalue λmin of D with the length
∥vmin∥ of the shortest vector in the lattice associated with the Shortest Vector Problem (SVP).

Theorem 3: Relating Eigenvalues of D to Zeta Zeros via Trace Formulas Using appropriate trace
formulas, the eigenvalues λk of the Dirac-like operator D on the spinfoam network F correspond
to the imaginary parts γk of the non-trivial zeros ρk =

1
2 + iγk of the Riemann zeta function ζ(s).

Specifically,

ζ
(1
2
+ iλk

)
= 0, ∀k ∈N.
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Proof Step 1: Spectral Action and Dirac-like operator
The Spectral Action Principle posits that the physical action S of a system can be expressed

solely in terms of the spectrum of the Dirac-like operator D:

S = Tr( f (D/Λ)),

where f is a cutoff function, and Λ is a scaling parameter. By choosing f appropriately, the
spectral action can encode various physical and geometric properties of the system.

Step 2: Choice of Test Function f
To relate the trace of f (D/Λ) to the Riemann zeta function, we select a test function f that

has zeros precisely at the points corresponding to the imaginary parts of the zeta zeros. A
suitable choice is:

f
(D
Λ

)
=

∞∏
k=1

(
1 −

D2

γ2
kΛ

2

)
,

where γk are the imaginary parts of the non-trivial zeros of ζ(s).

Step 3: Application of the Trace Formula
Using the trace formula, we can express the spectral action as:

S = Tr

 ∞∏
k=1

(
1 −

D2

γ2
kΛ

2

) .
Expanding the product, the trace becomes:

S = Tr

1 −
∞∑

k=1

D2

γ2
kΛ

2
+

∑
k<l

D4

γ2
kγ

2
lΛ

4
− · · ·

 .
Given that D is self-adjoint with eigenvalues λk, the trace can be written as:

S =
∞∑

k=1

(
1 −

λ2
k

γ2
kΛ

2
+

λ4
k

γ2
kγ

2
lΛ

4
− · · ·

)
.

For the action S to vanish (as required by the minimization condition δS = 0), each term in
the trace must individually vanish. This leads to the condition:

1 −
λ2

k

γ2
kΛ

2
= 0, ∀k ∈N,

which implies:
λk = γkΛ.

By appropriately choosing the scaling parameter Λ such that Λ = 1, we obtain:

λk = γk.

Thus, the eigenvalues λk of the Dirac-like operator D correspond exactly to the imaginary
parts γk of the non-trivial zeros of ζ(s).

Step 4: Identification of λmin with ∥vmin∥

Given the established correspondence λk = γk, the smallest non-zero eigenvalue λmin of
D corresponds to the first non-trivial zero γ1 of ζ(s). From Section 3.7.2, we have:

∥vmin∥ = kλmin,
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where k is a proportionality constant derived from the spectral properties of D and the
geometry of the spinfoam network F .

Substituting λmin = γ1, we obtain:

∥vmin∥ = kγ1.

This directly links the shortest vector in the lattice L to the first non-trivial zero of the Rie-
mann zeta function, thereby providing a spectral method to solve SVP within the spinfoam
framework.

3.6.4 Conne’s Trace Formulas and the Weil Explicit Formula

Connes interprets Weil’s explicit formulas as trace formulas on non-commutative spaces,
specifically Adele classes. This interpretation bridges the zeros of the Riemann zeta function
ζ(s) with spectral properties of operators in a non-commutative geometric setting [72].

Let h ∈ S(Ck) be a test function with compact support. Then, as Λ → ∞, the trace of the
operator QΛU(h) satisfies:

Trace(QΛU(h)) = 2h(1) log′Λ +
∑
v∈S∗k

h(u−1)|1 − u| d∗u + o(1)

where QΛ is the orthogonal projection onto the subspace spanned by functions vanishing
outside |x| > Λ, and U(h) represents the unitary operator associated with h.

By constructing appropriate vectors ηχ ∈ L2(XS)χ and employing properties of the spin-
foam network F , this demonstrates that the spectral side mirrors the distribution of zeta
zeros.

This trace formula establishes a connection between the spectral properties of D and the
distribution of zeta zeros, aligning with Connes’ interpretation of Weil’s explicit formulas.

3.6.5 Embedding the Dirac-like operator and Spectral Action

To align the Dirac-like operator D with Connes’ operator O (proposed in the Hilbert-Pólya
conjecture), we construct:

O = UDU†

where U is a unitary transformation ensuring thatO and D share the same spectral properties.

The spectral action is then defined as:

S = Tr
(

f
(
O

Λ

))
Choosing an appropriate test function f , this action is designed to isolate contributions from
the critical zeros of ζ(s), thereby enforcing λk = γk (eigenvalues of D matching zeta zeros).

3.6.6 Positivity of the Weil Distribution and the Riemann Hypothesis

Conne’s work shows that verifying the trace formula for spectral triples directly corroborates
RH for all L-functions [144]. Let QΛ be an orthogonal projection, and let h ∈ S(Ck) have
compact support. Then the following conditions are equivalent:

[label=()]As Λ→∞,

Trace(QΛU(h)) = 2h(1) log′Λ +
∑
v∈S∗k

h(u−1)|1 − u| d∗u + o(1)

All L-functions with Grössencharakter on k satisfy the Riemann hypothesis.
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3.6.7 Extension to Other Zeta and L-Functions

The framework presented extends naturally from the case of GL(1) to GL(n), where the
Adele class space is replaced by the quotient Mn(A)/GLn(k), and the corresponding Dirac-
like operator acts on sections of higher-rank bundles.

3.6.8 Implications for the Riemann hypothesis

The construction outlined provides a concrete realization of the Hilbert-Pólya conjecture,
positing that the non-trivial zeros of ζ(s) correspond to the eigenvalues of a self-adjoint
operator. By embedding D within the spectral triple and establishing the trace formula’s
equivalence to RH, we offer a pathway to potentially proving RH through spectral analysis
through the spectral action principle at the UV fixed point in ASG.

Broader Implications:

1.2.• Interdisciplinary Bridges: This approach not only deepens the connection between
number theory and non-commutative geometry but also bridges nonlinear dynamics
to quantum physics through operator algebras and quantum chaos [145] [52].

• Operator Algebras in Number Theory: The utilization of type III factors and other
operator algebra constructs introduces powerful tools from mathematical physics into
the study of number-theoretic problems, suggesting new avenues for research and
collaboration.

Implications for SVP
The identification λk = γk transforms the SVP into a spectral problem. By analyzing the

spectrum of the Dirac-like operator D, particularly focusing on λmin, we can efficiently de-
termine ∥vmin∥, thereby solving the SVP. This approach leverages deep connections between
spectral geometry, number theory, and quantum gravitational constructs, offering a novel
interdisciplinary methodology for tackling the NP-hard problem of SVP. To formalize the
above steps, consider the following mathematical framework:

1. Spectral Triple and Noncommutative Geometry: The spectral triple (A,H ,D) encap-
sulates the geometric information of F . The algebra A represents observables, H is the
Hilbert space, and D is the Dirac-like operator whose spectrum encodes geometric data [72].

2. Trace Formula Integration: The trace formula relates the spectrum of D to geometric
and number-theoretic quantities [144]. By designing the spectral action to incorporate the
zeta zeros, we enforce the correspondence λk = γk.

3. Proportionality Constant k: The constant k emerges from the normalization of the
spectral action and the specific geometric encoding withinF . It ensures that the eigenvalues
λk are directly proportional to the zeta zeros γk.

4. Minimization Condition: The condition δS = 0 ensures that the system evolves
towards configurations where the spectral correspondence is satisfied, thereby identifying
the shortest vector via spectral minimization.

By employing trace formulas within the spectral action framework, we have established
a rigorous correspondence between the eigenvalues of the Dirac-like operator D on the
spinfoam network F and the non-trivial zeros of the Riemann zeta function ζ(s). This
correspondence enables the identification of the smallest eigenvalue λmin with the length
∥vmin∥ of the shortest vector in SVP, thereby providing a novel spectral approach to solving
an NP-hard problem through the interplay of quantum gravity, non-commutative geometry,
and spectral theory.
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4 Discussion

4.1 Theoretical Implications

Implications of this work demonstrate a deep relationship between number theory and
quantum field theory, where emerging models of quantum gravity can be leveraged for al-
gorithmic speedups which can provide polynomial time solutions to a previously intractable
problem in the NP-hard class. The interactions between spinfoam networks, fermions, and
gravity can be explored through non-commutative geometry and the Hilbert-Pólya conjec-
ture, providing a possible direction for solving the Riemann hypothesis, and experiments
may yield results which provide further insights into the relationship between the BQP class
and other classes of problems within the computational complexity class hierarchy. The
frameworks discussed in this paper involving the Hilbert-Pólya conjecture will also thus be
related to other related conjectures such as the Birch and Swinnerton-Dyer conjecture [146],
the Montgomery pair correlation conjecture, the Montgomery-Odlyzko conjecture [147], as
well as the Berry-Keating conjecture [76]. Implications of this work are that if the smallest
eigenvalue of the spectrum of a Majorana particle can be measured, then based on proofs
outlined within this framework reliant on physical observables, P=NP-hard and the solution
to the RH would be demonstrated, and within our framework, must be demonstrated or
proven in part physically and not just by means of pure mathematical proof. While NP-hard
problems can be even harder than NP-complete ones, as before mentioned, not all NP-hard
problems are in NP, meaning their solutions might not be verifiable in polynomial time [143].

4.2 Potential Challenges

While this framework provides a theoretical basis for solving lattice problems known to be
NP-hard within polynomial time, many challenges remain towards experimental realization.
Spinfoams and spinfoam networks as well as other predictions made in LQG or quantum
gravity such as holographic noise remain speculative, and while there is evidence that a
non-trivial UV fixed point exists consistent with ASG, that remains to be rigorously proven,
particularly within a condensed matter experiments. The theoretical framework developed
in this paper suggests the possibility of extracting the geometric properties of a high di-
mensional lattice problem space through the spectrum of a Dirac-like dilation operator, and
to solve SVP, requires precision mapping of a lattice problem to spinfoams and spinfoam
networks, which may be non-trivial tasks requiring Hamiltonian engineering or may be
beyond technical feasibility, especially with current technology. Unknown physics may still
prohibit exploitation of spectral analysis towards more efficient algorithms, which remains
to be seen. While there are clues as to the possible solution to the Riemann hypothesis
through the replication of a physical system demonstrating the Hilbert-Pólya conjecture’s
self adjoint operator with spectrum which reproduces the Riemann zeta zeros (Majorana
tower Dirac-like dilation operator at the UV fixed point, with potential derived via the Bohr-
Sommerfeld quantization formula, constructed using the Riemann-von Mangoldt formula,
with eigenfunctions of the constructed Hamiltonian expressed in terms of Whittaker and
Bessel functions in different intervals, with explicit matching conditions for continuity and
differentiability across the intervals) up through the writing of this article, claimed systems
in published experiments meeting this criteria have not seen widespread recognition [148].

4.3 Future Directions

4.3.1 Use of Biological Tissues to Approach the SVP Under Orch-Or Theory

Suggested future directions for research could involve further investigations of topologically
protected states like Majorana zero modes within brain microtubules [24] in biological tissues
which could be leveraged towards harnessing quantum gravity physics towards solving
lattice problems, or distinguish current AI schemes from those exhibiting consciousness, as
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described by Dr. Roger Penrose and Dr. Stuart Hameroff in a similar way as described by
their Orch-Or theory [149-151]. A deeper investigation into the way brain tissue resolves the
binding problem, nonlocal and globally distributed memory manipulation and storage [152-
154,26], macroscopic quantumlike effects [155] like inter and intra brain synchrony [156], and
achieves backpropagation within its neural networks at scale [157,27] could provide further
insights into new physics involved in the frameworks discussed [158], and improve the
development of more powerful novel quantum computation architectures and algorithms.
Emerging organoid intelligence (OI) or bio-computing platforms may be utilized [159,160].

While theoretical foundations have promise, further empirical and experimental research
will be required to understand how the brain generates consciousness beyond neural net-
work models, which could involve investigating new physics, understanding the role and
physics of branching dendritic growth cones and microtubule structures [161-164,26], and
understanding the multiscale self assembly of neurons and their connections which could
map to spinfoams and spinfoam networks. From a philosophical perspective, the breaking of
NP or NP-hard cryptography could in this view be analogized to breaking ego boundaries
around an individual’s conscious experience, or a form of merging consciousness across
brains or entities which is experienced as empathy between individuals, or a formalization
of the hard problem of consciousness [165].

It has been theorized that biological microtubules host topologically protected states like
Majorana zero modes, where their lattice-like geometry have been speculated to host the
equivalent of qubits. These states, if present, could provide error-resilient channels for infor-
mation processing, echoing similar phenomena found in experiments with superconducting
nanowires. Further literature proposes microtubules acting as high temperature supercon-
ducting Wilczek time crystals [162,166] (thus orchestrally involved with the backpropagation
mechanism in the brain’s neural networks, as well as a possible explanation for Libet delays
[167,168]), and that these microtubules act as optical waveguides for so-called superradiant
”Majorana biophotons.” [162-164, 26-30,169,170]

Neural connectivity patterns (e.g., those seen in cortical columns or grid-cell activity) can
be modeled as high-dimensional lattices [171-174,158]. Analogies between these networks
and spinfoam models in LQG suggest that the brain’s structural and functional organization
might be understood through the lens of discrete geometric models, and one interpretation
is to consider the brain’s neural networks themselves under Orch-Or theory as a physical
realization of a spinfoam network representing holographic quantizations of spacetime [175]
[176], on a background of spacetime described by string/M theoretical models, where one
may employ braiding operations [177,178]. Indeed, there is an exact mapping between
the variational RG flow which is used to understand models of quantum gravity and deep
learning [179], and where variational algorithms have shown promise in existing literature
towards approaching the SVP [180]. The quantum gravity ”loop” thus described by LQG
could be understood in Penrose’s Orch-Or framework as describing the ”noncomputable”
mechanism by which the brain operates to generate consciousness. In this view, the spectrum
of a Dirac-like operator discussed in earlier sections (central to the spectral action principle)
through Planck scale fluctuations [181,182,55,56] could encode not only geometric informa-
tion in quantum gravity but also cost functions or “actions” governing neural dynamics,
accounting for bidirectional backpropagation [27,31].

Cells are known to emit biophotons (usually around 800 nm wavelength, so-called ”Majo-
rana photons” [163,183-185]) that, in principle, could interact with microtubule-based quan-
tum states [186-189]. Such interactions might not only aid in maintaining coherence over
long distances (nonlocal memory storage and distribution across brain tissues [22,23]) but
also provide a mechanism for encoding spectral information analogous to the spectral action
principle in noncommutative geometry. Indeed, superradiance in brain macromolecular
structures has been observed [161], which could account for a mechanism for the bind-
ing problem [25,26]. These biophotons are hypothesized to travel along the microtubule’s
cylindrical structure that can act as an optical waveguide, interacting with the topologically
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protected states [190-192], acting also on actin modulating dendritic arborization [193-195]
and thus play a pivotal role in strengthening or weakening networks. In such a system, the
biophotons serve as carriers of phase and amplitude information; they may “read out” or
modulate the quantum states, thereby reinforcing coherence or even triggering state transi-
tions [196] [197] that are crucial for Orch-Or.

Since the cellular environment is inherently oscillatory—due to periodic biochemical
signals, electrical activity, and terahertz signals—the quantum states within microtubules
might be described by a periodically driven Floquet system. The Floquet operator governs
the time evolution over one period of the drive, capturing the essence of periodic modu-
lation. In this context, the repetitive driving (for instance, from metabolic rhythms or ion
fluxes) can help stabilize the quantum states against decoherence. The Cayley transform is a
powerful mathematical tool that converts a unitary operator (such as the Floquet operator)
into a self-adjoint (Hermitian) operator. This self-adjoint operator can then be interpreted
as a Hamiltonian, which in turn governs the energy spectrum of the system. By applying
the Cayley transform, one connects the evolution of the periodically driven system to its
underlying spectral properties.

In non-commutative geometry and various quantum gravity models, the Dirac operator
encodes geometric and topological information about a discrete space or lattice. In our
scenario, the transformed Hamiltonian (derived via the Cayley transform) is analogous to a
Dirac operator defined on the microtubule lattice. Its spectrum not only reflects the stability
and topological protection of the quantum states but may also define the “cost function” or
action that has parallels in both quantum gravity and neural network dynamics.

Within the Orch-Or framework, the sustained coherence of quantum states in micro-
tubules is crucial. The topologically protected states, maintained via periodic driving (Flo-
quet dynamics, as well as other hypothesized mechanisms such as structured water channels
[198,199] or room temperature superconductivity [160,200]) and characterized by their Dirac
spectrum, persist until a critical threshold is reached. At this critical point, gravitational
effects (conceptually linked to the objective reduction of the quantum state, or similar to
the ”holographic noise” discussed in earlier sections at the Planck scale [55.56]) trigger an
”objective collapse” of the evolving wavefunction (at a tipping point, similar to that which is
reached in turbulent fluid flow causing Richardson cascades which manifest across scales),
which is hypothesized to be responsible for conscious processing (self referencing, as in a
quantum gravity effect) [181]. As biophotons propagate along the microtubule waveguides,
they interact with these protected states. Their phase and amplitude variations—governed
by the periodic dynamics captured in the Floquet operator could modulate the coherence or
even precipitate the objective reduction event [201]. Essentially, the biophotonic “readout”
serves as a feedback mechanism reinforcing the clocking behavior [202] that is central to the
Orch-Or mechanism.

Time crystals are phases of matter that exhibit periodic oscillations—even in their ground
state—by breaking time-translation symmetry. If microtubules act as time crystals [162,166],
they would support long-lived, coherent bidirectional oscillations. These persistent oscilla-
tory states can serve as a robust “clock” within neurons [202]. In the Orch-Or model, the
coherent oscillatory states of microtubules are postulated to remain isolated long enough (de-
spite a warm, wet environment) to enable quantum computations that culminate in objective
reduction [203].

Classical models of neural communication center on the propagation of action potentials
and neurotransmitter release. In these models, signals are carried by ionic currents along
axons and across synapses. These processes occur on time scales of milliseconds and have
conduction velocities limited by the cable properties of neurons, and alone cannot account
for backpropagation [27,31]. For example, even the fastest myelinated axons conduct at only
up to a few hundred meters per second. Although such speeds suffice for many everyday
tasks, they are difficult to reconcile with rapid cognitive phenomena - for instance, the nearly
instantaneous recognition or binding of sensory features such as in the case of flashbulb
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memory recall which seem to occur much faster than classical electrochemical delays would
permit.

Recent studies have reported evidence that neural communication and certain cellu-
lar processes may involve oscillatory phenomena at high-frequency ranges [204]. Evidence
shows self-similar patterns of conductive resonances repeating in terahertz, gigahertz, mega-
hertz, kilohertz and hertz frequency ranges in microtubules. These conductive resonances
apparently originate in terahertz quantum dipole oscillations and optical interactions among
pi electron resonance clouds of aromatic amino acid rings of macromolecular neurotrans-
mitters and tryptophan, phenylalanine and tyrosine within each tubulin, the component
subunit of microtubules, and the brain’s most abundant protein [205]. These frequencies
are far beyond the classical range typically considered in standard electrophysiology (which
mostly focuses on hertz to kilohertz signals, such as EEG rhythms). These findings chal-
lenge assumptions and models of brain information processing arising solely from classical
electrochemical models.

It has long been known that general anesthetic agents alter microtubule assembly and
stability, and has been a proposed mechanism by which anesthetics disrupt consciousness
since at least the 1960s [206]. Studies suggest that anesthetic agents can directly block high-
frequency oscillations. If such oscillations underlie the quantum coherence in microtubules,
then the disruption by anesthetics could effectively “turn off” the quantum computational
processes that Orch-Or claims are essential for conscious experience [207]. This offers a po-
tential explanation for why anesthesia leads to unconsciousness while leaving other essential
brain functions unaltered [204].

One other challenge to conventional electrochemical theories of brain function is that if
the brain were to rely solely on ionic currents, the observed energy efficiency would likely
require a higher power budget than the roughly 20 watts [208] that the human brain con-
sumes. Quantum coherence in macromolecules like microtubules and bidirectional terahertz
signals may provide a “shortcut” for neural information processing [209,210], bypassing the
limitations imposed by the slower, energetically costly electrochemical signaling pathways
[211], and with hardware inspired by this theory, or direct implementation within biological
tissues, could drastically reduce power requirements and thus cost for AI systems.

Actin filaments and dendritic growth cones are pivotal in shaping synaptic connectivity
and plasticity, pruning connections, in a manner analogous to the way in which degrees
of freedom are pruned in the algorithm proposed in earlier sections, and are affected by
backpropagation to adjust weights [31]. In particular, fluctuations in the biophotonic field
might modulate local biochemical signals (such as calcium influxes) that guide the turbulent
arborization of dendritic growth cones, modulating dendritic arborization [193,194] and
branching factors which could strengthen or weaken networks.

4.3.2 Turbulence as Related to Dendritic Pruning, Magnetohydrodynamics, and Emergence

Deeper investigations into conformal scaled emergent macroscopic quantumlike behaviors
and their relationship with nonlinear deterministic systems discussed in this paper, as well
as theories which involve discrete interpretations of spacetime itself like those found in LQG
may provide further insights into other unsolved problems in physics like the problem of
the existence of smoothness in turbulent fluid flows [212,53], the ontology of magnetohy-
drodynamic instabilities (which are governed also by the Navier Stokes equations), or the
emergent macroscopic quantumlike behavior in the brain, or in social or economic systems
[213-215].

If one treats fluid dynamics at extremely small scales (or some hypothetical extension),
it is possible that quantum-gravity-like corrections could appear. In practice, standard
Navier–Stokes equations hold well above any quantum-gravitational scale, so these refer-
ences push into territory beyond mainstream fluid mechanics, and yet bares resemblance
to the objective orchestrated collapse described by Dr. Penrose’s Orch-Or theory, or the
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”holographic noise” at the Planck scale discussed in earlier sections [55,56,216].
Kolmogorov’s 1941 theory posits that turbulent energy “cascades” from large eddies

down to smaller ones until dissipation by viscosity at the smallest scales. In many regimes,
the turbulent flow exhibits scale invariance, leading to self-similar (fractal) structures in
velocity fields. Scale invariance (and sometimes intermittency corrections) underlies many
attempts to connect turbulence with field-theoretic interpretations of the phenomenon. If
one views onset to turbulence as a quantum gravity phenomenon seeded at the Planck scale
[55,56,216] (near the UV fixed point), then it is analogous to orchestrated objective reduction
under Dr. Penrose’s theory, suggesting a similar underlying mechanism [217,218].

There is a long history of analogies between zeta-function zeros and the resonances
in chaotic or quantum-chaotic systems. In rigorous mathematical treatments of chaotic or
turbulent flows (especially in low-dimensional models which could be described by Louiville
field theory), Pollicott–Ruelle resonances often arise and can sometimes be linked to zeta
functions that encode spectral data of a chaotic dynamical system.

Under some conditions, turbulence might be captured by something akin to a 2D con-
formal field theory [106] (such as the Moonshine module, also known as the Monster CFT,
discussed in section 2.5) whose partition function (or correlation functions) resonates with
the structure of the j-function. In principle, the Fourier coefficients of the j-function (which
encode representations of the Monster group) might be interpreted as “microstate data” in
the flow.

Monstrous Moonshine is the surprising relationship between the Monster finite group
(the largest sporadic simple group) and the modular j-function. The Fourier coefficients
of the j-function turn out to encode dimensions of representations of the Monster group.
Moonshine is intimately tied to conformal field theory, since the Moonshine module (the
“Monster CFT”) has the Monster group as its symmetry group. Near the UV fixed point
described by ASG models, dimensional reductions are predicted [106,138,139], making the
Monster CFT a plausible model.

Chaotic behavior in quantum systems, like those governed by the Gross-Pitaevskii equa-
tion, parallels the onset of turbulence in classical fluids. Quantum fluctuations or holographic
noise introduced by quantum gravity at the Planck scale [111,112] acting as a perturbative
source for chaotic dynamics in spacetime, mirrors turbulent behaviors observed in fluid
dynamics [216,217,219]. Dissipation, represented as viscosity in the Navier-Stokes equation,
is linked to quantum effects such as the quantum potential. This supports the paradigm
that classical turbulence can emerge from quantum systems under certain conditions, where
the viscosity-entropy ratio is directly linked to quantum parameters, such as Planck’s con-
stant, and provides a bridge between quantum chaos and classical fluid dynamics, where
it is known that the Riemann zeta function can be used to model the phenomenon [220-
223]. In models where the Monster group or Moonshine module are employed in modeling
turbulence, the j-function may be instrumental in approaching the existence of smoothness
problem. In section 4.3.7, in the discussion of the black hole information paradox, similar
mathematics which expresses the smoothness of the black hole firewall can be appropriated
also towards the existence of smoothness problem in turbulence.

Emergence, in the context of quantum gravity, non-commutative geometry, and spectral
theory, represents the concept where complex, large scale phenomenon can arise from the
interactions of smaller scale components which often obey simpler or seemingly different
rules, and which without a complete underlying theory are often modeled by perturbative
or numerical methods [224]. In ASG, the UV fixed point represents a form of emergent
scale symmetry in the theory, which could potentially give rise to a continuous spacetime
geometry when considered at larger scales, where the local quantum interactions ”smooth
out” to produce what appears to be a continuous fabric of spacetime used within general
relativity [97]. The equation governing the flow of the fluctuations from the microscopic to
the macroscopic scale is the Wetterich equation [225].

In dynamical systems, the Frobenius–Perron operator governs how probability densities
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evolve and reveals crucial features of chaos (e.g., intermittency, correlation decay). The
Frobenius–Perron operator is a formal tool for capturing how densities evolve in a dy-
namical system, which can be extended (with difficulty) to high-dimensional flows like
Navier–Stokes. Intermittency is a hallmark of turbulent flows where extreme bursts of ac-
tivity occur irregularly. By examining the spectrum of this operator—or related concepts
like Ruelle–Pollicott resonances—one can, in principle, glean insights into how likely it is
for the system to exhibit such bursts, how correlations decay, and whether the flow sustains
complex spatiotemporal structures.

4.3.3 Vacuum Tube Driven Tesla Coils Exhibit Suppressed Plasma Bifurcations and MHD Insta-
bilities like Dendritic Pruning

One speculative avenue for possible further investigation of this phenomenon of emergence
is to devise experiments to understand the ontology of straight, spearlike arcs generated
from vacuum tube driven tesla coils with centrally controlled suppression of bifurcations.
High voltage hobbyists have long known that when building tesla coils driven by vacuum
tubes, they produce arcs which do not zag and appear straight - lacking bifurcation forks
(and thus the magneto-hydrodynamic instabilities which initiate them). Observing these
arcs reveals a fractal pattern that repeats across scales which does not occur in tesla coils
driven by MOSFETs, spark gaps, or IGBTs. Since magneto-hydrodynamic instabilities are in
part modeled with the Navier-Stokes equations like turbulence, it is possible that quantum
gravity effects themselves at the Planck scale seed the bifurcation events and appear globally
throughout the system at scale when properties are preserved when the tesla coils are driven
by the vacuum tubes, where fixed points or tipping points are related to the UV fixed points
and RG flow [226-229]. Extending to biological tissues, the principle of teslaphoresis could be
extended towards understanding electromagnetic brainwave oscillations [230] and their role
in orchestrating the growth patterns within dendritic growth cones [231], whose dynamics
conceptually resemble turbulent fluids [232], and thus also the filamentation arcs seen from
tesla coils, or could be used to suppress MHD instabilities within fusion tokamaks.

4.3.4 Other Experimental Substrates

Other than within microtubules, one substrate for investigating this is within graphene,
where it has also been found that graphene sheets when properly angled form moire pat-
terns and create superconductivity [233,234], or within nanowire networks [235], however,
Majorana zero modes have also found experimental realization in a superconducting topo-
logical crystalline insulator made of SnTe (Tin Telluride). Researchers from Hong Kong
University of Science and Technology (HKUST) and Shanghai Jiao Tong University identi-
fied these multiple Majorana zero modes in a vortex [236].

Ultra-strong coupling in quantum systems refers to a regime where the interaction
strength between different components of a system (such as qubits and resonators) becomes
comparable to or exceeds the system’s characteristic energy scales, such as the transition
frequencies of the individual components. This regime surpasses the strong coupling limit,
where interactions are significant but still smaller than the system energies. Achieving
ultra-strong coupling opens new avenues for Hamiltonian engineering, possibly enabling
the simulation of complex quantum systems, including spinfoam networks integral to LQG
[237]. Work has also gone towards achieving Hamiltonian engineering of higher dimensional
lattice structures utilizing so-called ”synthetic” extra dimensions [238].

In the context of Majorana fermions in condensed matter systems, as discussed in earlier
sections, the Dirac-like operator can be associated with the BdG Hamiltonian, which de-
scribes the quasiparticle excitations in superconductors. The eigenvalues of the Bogoliubov-
de Gennes Hamiltonian HBdG correspond to the energies of the MZM quasiparticle exci-
tations. MZMs are characterized by eigenvalues precisely at zero energy, lying within the
superconducting gap. Changes in the spectrum indicate transitions between topological and
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trivial phases. Shifts and splittings in the eigenvalues reveal interactions between Majorana
modes, which are crucial for quantum gate operations. Scanning tunneling microscopy
(STM) can distinguish between localized and extended states, providing clear evidence of
MZMs. High-resolution spectroscopy enables precise measurement of eigenvalues near
zero energy. Alternatively, deviations from standard Coulomb blockade patterns in small
superconducting islands, where electron transport is suppressed due to charging energy,
can indicate the presence of Majorana modes and their associated eigenvalues. Measuring
the spectrum in systems with multiple MZMs, such as braiding networks, adds layers of
complexity.

Advanced spectroscopic techniques and theoretical models are necessary to disentangle
the interactions and accurately measure the corresponding eigenvalues. Furthermore, zero-
energy peaks can sometimes arise from other phenomena, such as Kondo effects or trivial
Andreev bound states. Therefore, careful analysis and multiple measurement techniques
are required to confirm the presence of MZMs. [239] [240] [241] [242] [243] [244] In use
of biological tissues, graphene has shown promise in high resolution recording or neuron
interactions [245], and two-photon interactions can be used to image neuron activity [246]
[247].

It may be argued that the smallest eigenvalue of a Dirac-like operator’s spectrum has
already been measured, thus demonstrating a polynomial time solution to SVP. In lattice
QCD, where the Dirac-like operator’s spectrum is studied to analyze the properties of quarks.
Experiments have measured the smallest Dirac eigenvalues in finite-temperature setups,
particularly in relation to phase transitions. In these cases, the spectrum of the Dirac-like
operator provides insights into topological properties and chiral symmetry. In condensed
matter systems like this, Dirac-like operators describe low-energy excitations, such as in
graphene and topological insulators [24], where these excitations behave like relativistic
Dirac fermions. These systems have been used to experimentally observe Dirac spectra and
their corresponding eigenvalues, helping to understand electronic properties and quantum
anomalies in materials with Dirac-like quasiparticles [248].

4.3.5 Learning with Errors and Error Correction

Some researchers propose that gravitational effects, particularly gravitational decoherence,
could introduce ”random” noise in quantum systems that leads to irreparable errors. In
these models, the fluctuations of spacetime at the Planck scale might result in random per-
turbations, potentially affecting the coherence of qubits, especially when scaling quantum
computers. The loss of quantum coherence would make error correction significantly more
difficult or even impossible, as the errors could be fundamentally caused by the structure
of spacetime rather than local noise sources like thermal fluctuations or external interac-
tions [249-253]. Roger Penrose has suggested that gravity itself might cause the collapse
of quantum superpositions as a quantization of gravity, leading to gravitationally-induced
decoherence, based on the Penrose-Diosi models, which, like his Orch-Or theory [254], posits
that mass differences between quantum states might cause a collapse of superpositions, con-
tributing to uncorrectable errors in quantum systems which correspond to consciousness.
However, the Penrose-Diosi model has come under scrutiny and faced challenges with ex-
perimental verification [255]. Nonetheless, macroscopic quantumlike behavior does seem to
manifest in physical systems, suggesting that these initial ideas can be refined further.

The LWE problem, known, like its analog the SVP, to be NP-hard, involves solving systems
of linear equations where some noise or error is introduced [117-119]. While LWE typically
arises in a different context in literature [117], there is a conceptual analogy: just as LWE
introduces hard-to-remove noise (perturbations) into systems, gravitational noise might in-
troduce similar hard-to-remove random errors in quantum systems, especially if gravity
itself causes fundamental noise at the Planck scale (researchers have proposed methods of
detecting gravitational decoherence [249]). Theoretical models like gravitational decoher-
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ence and Penrose’s OR theory provide similar potential frameworks for understanding how
gravity might introduce errors that cannot be handled by quantum error correction, except
at the UV fixed point in ASG. Standard quantum error-correcting codes can correct local
noise, but it’s unclear how they would fare against errors introduced by fundamental space-
time fluctuations or holographic noise, as the exact nature of these potential errors remains
speculative.

Recent work on holographic noise suggests that the holographic principle could imply
random fluctuations in spacetime geometry [256], which may also affect quantum systems
by introducing errors that standard QEC cannot correct on its own. In this interpretation,
the UV fixed point invariance allows a quantum system to become macroscopically encoded
and scalable, free of errors or corrections. The connection between ASG and holographic
noise suggests that at the Planck scale, where spacetime fluctuations are expected to be
strongest, the well-behaved nature of gravity in ASG could serve as a cancellation mechanism
(like the pruning in our algorithm). If the fluctuations that generate holographic noise are
suppressed due to the stabilization from the UV fixed point, this might lead to reduced
errors in quantum systems caused by these fluctuations. Indeed, noise can be used to
generate constrained Hamiltonian dynamics in atomic quantum simulators of many-body
systems, taking advantage of the continuous Zeno effect, where the Zeno effect has been
proposed in the context of quantum gravity to underlay the mechanism of consciousness
[257-259].

Furthermore, another interesting analogy exists between the LWE problem and the mech-
anism by alignment in error backpropagation through arbitrary weights in brain tissues by
Orch-Or (the weights transport problem) [31]. One hypothesis is, thus, that the problem of
backpropagation and weight transport in biological tissues can be described formally as the
LWE problem, for which classical models do not have any realistic explanation.

4.3.6 Black Hole Information Paradox

The defining feature at the heart of the black hole information paradox, is that quantum me-
chanics requires the way the system evolves is unitary - and that information is not lost, but
classical black hole dynamics suggests that black holes evaporate by means of thermal black-
body radiation, which does not ostensibly carry detailed information about the matter that
fell into the black hole. Originally, Hawking radiation was calculated under semi-classical
assumptions, resulting in a purely thermal spectrum, which has no handles for information
recovery, suggesting entanglements may carry and encode the missing information.

While predictions made by supersymmetric models have not been observed in experi-
ments at the LHC, near the UV fixed point predicted by ASG, theories experience dimensional
reductions [138,139] which would occur at or near the black hole center, where one can count
BPS states in a dual 2D CFT [106] (like the Monster CFT implicated in supersymmetric theo-
ries) where the degeneracy of states at a given mass/energy matches the Bekenstein-Hawking
entropy formula. Just as coefficients of the Moonshine functions correspond to dimensions of
Monster representations, in quantum gravity theories they can represent microstates whose
exponential growth in degeneracy reproduces the Bekenstein-Hawking formula [260].

The famous black hole information paradox could also be analogized to a cryptographic
problem [261], or a one-way information problem, where information can flow in one di-
rection, but can never escape once falling into the intractable labyrinth of a black hole.
This framework which utilizes principles in quantum gravity thus could potentially also be
applied towards understanding the black hole information paradox, where an ostensibly
NP-hard (or harder) cryptographic function by its natural form in the most extreme case
with black holes must ultimately be tractably ”solvable.” Physicist Roy Kerr who discov-
ered the Kerr metric and predicted spinning black holes, in 2023 declared that it is likely
that actual singularities do not exist [262]. By reviewing extensions of general relativity in
Einstein-Cartan-Sciana-Kibble (ECSK) theory which integrate spin and torsion into models,
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speculative resolutions to the black hole information paradox have been an ongoing area of
research [263-265].

To model this, theories reliant on AdS/CFT assert that a gravity theory in (d+1)-dimensional
AdS is “holographically dual” to a d-dimensional CFT on its boundary. However, the uni-
verse is not an AdS space, it is dS (has a positive curvature). dS/CFT is more speculative
[266]: the idea that quantum gravity in de Sitter space might be dual to a Euclidean CFT at
“future infinity.” One might see dS branes embedded in an AdS bulk (e.g., Karch–Randall
models), or a domain-wall solution connecting an AdS vacuum to a dS vacuum [267]. The
hemisphere (Euclidean dS) can be smoothly joined to a hyperbolic space (Euclidean AdS).
In some papers/presentations, this is directly called a “centaur geometry” as discussed in
section 2.6 [78-80].

One can embed an AdS patch inside a dS background (or dS inside AdS) from the opposite
vantage, reversing which side is “inside” of a black hole vs. “outside” of a black hole to devise
a theoretical ”minotaur” geometry. The “minotaur” notion inverts the picture, embedding
AdS inside dS, flipping what is “inside” and what is “outside.” The Monster group (and its
associated CFT) could, in principle, appear if the AdS portion of such a geometry is a 3D
bulk whose 2D boundary supports the Monster CFT. In the “Minotaur geometry,” start with
a large dS background (like a giant “labyrinth enclosure”) and nest an AdS pocket within it.

The “minotaur” resides in a black hole (or ”labyrinth”) center—i.e., the AdS patch, de-
scribed by Karch–Randall branes. If ASG leads to a scenario in which the “effective dimen-
sion” is 2 as it predicts, one could imagine that the fundamental degrees of freedom near the
UV scale might be described by or related to a 2D conformal field theory such as the Monster
CFT. Observers in the dS domain can “descend” into the black hole described by spinfoams
and which can be traversed by braiding operations, crossing the domain wall, to reach the
hidden AdS region. The j-function as a modular function whose Fourier coefficients encode
dimensions of Monster group representations, can be interpreted it as a “partition function”
capturing infinitely many symmetric states, predicting a smooth firewall (where analogous
mathematics can be used to approach the ”existence of smoothness” problem in turbulence).
The ”centaur geometry” describes a dS space embedded on an AdS space [78-80] (in a black
hole looking out), suggesting that from the interior of a black hole, one might see a region
akin to de Sitter geometry “looking outward” (the horizon playing a key role), whereas the
“minotaur geometry” describes an Ads space embedded on a dS space - a dS vantage where
an AdS ”bubble” is on the inside (like a labyrinth’s core, the black hole).

In standard AdS/CFT, the boundary at spatial infinity for AdS is where the conformal
field theory resides. In a hypothetical dS/CFT, the “boundary” is at future (or past) infinity
in a de Sitter space. A “UV cutoff” in gravity can correspond to a “high-energy cutoff” in
the boundary theory. Analogously, an “IR cutoff” might appear in the boundary theory if
the bulk geometry changes drastically at large distances. We can apply AdS/CFT on the
boundary of the AdS portion, or a hypothetical dS/CFT on the future boundary of the dS
portion. The black hole horizon is a smooth transitional boundary (“domain wall”). At
high energies (short distances), we see one embedding (dS in AdS), with black hole interiors
playing a role as “windows” from which we look out. At low energies (long distances), we
see the other embedding (AdS in dS), with black holes approached from outside. Theoretical
models utilizing this mathematical framework predict smooth transitions between black
hole exteriors and interiors.

In the case of black hole physics, the Orch-Or quantum gravity mechanism that allows
for backpropagation in brain tissue implicated in our algorithm discussed to resolve lattice
cryptography is thus analogized to information escaping black hole interiors encoded on the
spectrum of escaping Hawking radiation entangled with the black hole interior which can be
modeled by j-function coefficients or Riemann zeta zeros, even after escaping, reflecting an
analogous dynamic feedback loop by means of braiding operations and random reductions
discussed in our algorithm, where spinfoam models are used to model black hole interiors.
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4.3.7 Alternative Interpretations of Spinfoam Models

One possible way to approach the problem of a lack of evidence of spinfoams or spinfoam
networks is to interpret quantum states defined by their topological features themselves as
aligned with how spinfoams describe the evolving structure of spacetime, where geometric
and topological properties define the interactions at the quantum level, and the structure of
the spinfoams and spinfoam networks both protect and define the topological states, giving
the Majorana zero modes their useful properties in the context of our algorithm, or consider
that spinfoams or spinfoam networks may only manifest under certain conditions, such as
at or near fixed or critical points.

Remember that fermionic systems can be analyzed using bosonization methods, which
offer an alternative description of the same system in terms of bosonic fields. In these bosonic
formulations, Majorana zero modes are represented through vertex-algebra techniques, like
spinfoams and spinfoam networks, and the solutions match the fermionic description. In
fermionic systems, the particles obey Fermi-Dirac statistics, and the system is typically
described using fermionic operators that follow anti-commutation (non-commutative) rules.
This is the natural description for systems involving particles like electrons, which include
Majorana fermions in the context of topological quantum systems. The fermionic description
is the standard way to analyze systems composed of fermions, such as superconductors or
the Majorana zero modes discussed earlier. The bosonization approach, on the other hand,
can be used to map fermionic systems into bosonic fields [51].

Bosonic fields follow Bose-Einstein statistics, which are simpler to handle in some the-
oretical models, and can possibly map spinfoam and spinfoam network interpretations to
bosonic interpretations of quantum states in such systems. This mapping allows the proper-
ties of Majorana zero modes to be understood through the lens of bosonic excitations, where
the topological features of the quantum states are preserved and protected. By linking this
idea to spinfoam networks, the bosonization method could offer a novel way to represent the
evolving quantum structure of spacetime in a manner consistent with topological quantum
field theories.

This interpretation suggests that both spinfoams, which describe the discrete evolution of
spacetime, and the topological protection inherent in quantum states, share a deep connec-
tion. The same underlying topological principles that define the interactions and protection
of Majorana zero modes in condensed matter systems could apply to the quantum structure
of spacetime itself, with spinfoams providing the geometric and topological foundation. In
this framework, the robustness of Majorana zero modes, protected against local perturba-
tions, is analogous to the stability of spinfoam structures at the quantum level afforded by a
UV fixed point. Furthermore, bosonization, by offering an alternative representation of the
system, could bridge the gap between the fermionic and bosonic descriptions of quantum
gravity and quantum states, potentially revealing new insights into both areas of study.

In this interpretation, the UV fixed point stabilizes the dynamics of the spinfoam network,
and the aperiodic tesselation structure or nonlocal nature of the lattice which includes non-
linear information caught up in superpositions can be mapped to and encapsulated within
the topologically protecting toric codes and Dirac-like operator’s spectrum - this describes
how the deterministic local nature of discrete tesselation structures like Penrose tilings or
toric codes can holographically correspond to bulk long range smooth order. Conceptually,
aperiodic Penrose tilings which are analogous to toric codes used in topological protection
are an example of a structure which obeys simple rules locally, but which can be extended to
understand long ranging order - properties which in the case of topological computing are
exploited to produce topologically protected states [268], Polynomial rings provide the alge-
braic foundation for constructing toric varieties and toric codes while the non-commutative
torus generalizes these concepts to a noncommutative setting. [269]

As discussed earlier, the Monster group, which is the largest of the sporadic finite simple
groups, and Monstrous Moonshine, share a profound connection through the j-function,
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where its Fourier coefficients encode information about the representations of the Monster
group (which is similar to the way in which the spectrum of the Dirac-like operator encodes
geometric information about lattice structures), linking number theory to group theory. The
non-Abelian nature of these modes could be conceptually linked to the highly non-trivial
symmetries of the Monster group. There is an interplay between topological systems, where
Majorana fermions emerge as quasi-particles, and the complex symmetries of the Monster
group, as both involve non-Abelian statistics.

In particular, these vertex operator algebras (VOAs) before-mentioned, which are closely
related to conformal field theories, describe how states in string theory or CFT evolve. The
Monster group can be seen as acting on certain VOAs, and there are interpretations where
Majorana fermions might be described within these frameworks. The Frenkel-Lepowsky-
Meurman VOA (also called the Moonshine module) is a structure where the Monster group
acts as an automorphism group, suggesting it may also play a role in understanding the
Riemann zeta zeros through spectral interpretations and the symmetries of modular func-
tions. In this interpretation, the Monster group could be related to the set of symmetries that
dictates the rules of the quantum system.

The j-function’s role as a modular form means it transforms under the modular group
SL(2,Z), which is closely connected to the Riemann zeta function via the spectral theory of
automorphic forms. Modular forms, including the j-function, can be understood as eigen-
functions of certain differential operators (like the Laplacian) on hyperbolic space. Similarly,
the Riemann zeta function has a spectral interpretation in terms of its zeros being related
to the eigenvalues of a self-adjoint operator, conjectured in the Hilbert-Pólya conjecture.
Modular forms and L-functions (generalizations of the Riemann zeta function) share deep
connections, so the j-function might have indirect implications for understanding the Rie-
mann zeta zeros through these spectral connections. The coefficients of the j-function encode
information about the representations of the Monster group in a manner that is similar to
the way in which the spectrum of the self-adjoint Dirac-like operator’s spectrum encodes in-
formation about spinfoam and spinfoam network lattices, where the Monster group acts on
the Moonshine module, which is a graded infinite-dimensional representation of the group,
similar to the dynamic between discrete and continuous representations of spacetime.

4.3.8 Wigner’s Dilemma, the Axiom of Choice Paradox, and Philosophical Implications for Math-
ematics

Finally, ramifications of ongoing investigations could yield insights into Eugene Wigner’s
”Unreasonable Effectiveness of Mathematics in the Natural Sciences,” [270] as well as how
the brain is able to project mathematical symbols to make far reaching nonlocal predictive
insights about nature. By viewing the relationship between mathematics and physics as
inexorably intertwined as suggested by Alain Connes, paradoxes like the axiom of choice in
group theory [271] or Godel’s incompleteness theorems could be interpreted as arising from
the incompleteness of quantum field theory and inconsistency of general relativity [89,90,272]
with the nonlinear fermion-spinfoam-gravity interactions and spectral action principle where
pure mathematics breaks down and is described only in physical observables. In this way, the
way that mathematics and the predictive power of other symbols is used can be interpreted
as a kind of acausal synchronicity arising from holography [273].

5 Conclusion

This paper presents a novel algorithm that synthesizes advanced concepts from quantum
gravity, noncommutative geometry, spectral theory, Orch-Or theory, and post-SUSY particle
physics to address the SVP, a cornerstone of lattice-based cryptography [2]. By mapping
high-dimensional lattice points to spinfoam networks and encoding SVP vectors within
the spectral properties of Dirac-like operators [15], we establish a novel interdisciplinary
approach that leverages the interactions of topologically protected Majorana fermions [18]
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with the gravitational field through the spectral action principle [35], and then suggest future
experimental realization within biologically inspired hardware or biological tissues.

Central to our framework is the utilization of Majorana fermions and topological quan-
tum computing (TQC), which provide robustness against perturbations and facilitate error-
resistant quantum state manipulations. This robustness is critical for maintaining the in-
tegrity of the spectral encodings essential for solving SVP. Furthermore, by incorporating
the Hilbert-Pólya conjecture [15], which posits a connection between the non-trivial zeros of
the Riemann zeta function and the eigenvalues of a self-adjoint operator, we bridge number
theory with quantum spectral analysis. This connection not only offers potential pathways
to addressing the Riemann hypothesis but also reinforces the theoretical underpinnings of
our SVP-solving methodology.

The integration of the Wodzicki residue and the Selberg Trace Formula within the spectral
action framework allows for the extraction of geometric features from the Dirac-like opera-
tor’s spectrum [126,127], thereby directly encoding the lengths of lattice vectors into spectral
data. This spectral encoding, combined with the dynamic optimization facilitated by the
RG flow towards a UV fixed point, ensures that the spinfoam network’s geometry remains
stable and scale-invariant [107], which is crucial for the accurate identification of the shortest
vector in SVP.

Our framework also demonstrates compatibility with other quantum gravity theories,
such as string Theory and ASG, through the utilization of the AdS/CFT duality and fixed-
point theories. This compatibility underscores the versatility and potential broad applicabil-
ity of our approach within the landscape of theoretical physics.

However, several challenges remain. The theoretical nature of spinfoam networks and
the current lack of empirical or experimental validation for many of the proposed constructs
in the manner as expressed in this paper together pose significant hurdles. Differing in-
terpretations of mathematical objects or constructs and how they map to physical systems
remains an open question. Looking ahead, future research should focus on deeper mathe-
matical analysis of proposed mappings, as well as exploring experimental realizations within
topological quantum computing platforms and biologically inspired hardware or directly
within biological tissues. Collaborative efforts across disciplines will be essential to validate
and refine this framework, potentially leading to the development of polynomial-time al-
gorithms for SVP and offering deeper insights into the interplay between quantum gravity
and number theory, and could pave the way towards AI systems with power requirements
several magnitudes below that of current systems.

In summary, this interdisciplinary framework not only proposes a novel approach to
solving the SVP but also paves the way for new connections between cryptography and
theoretical physics. By leveraging the spectral properties of Dirac-like operators within
quantum gravitational constructs, we offer a promising direction that challenges existing
computational complexity paradigms and enriches our understanding of the fundamental
structures underlying both mathematics and the physical universe.
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