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Abstract -The study provides an alternative definition of the assembly space as an acyclic, 2-in-regular digraph
of strings provided with an edge labeling map that preserves the commutativity of an assembly step but defines
the order of concatenation of strings in this step. Remarkably, the uniqueness of each vertex is the sufficient
criterion to establish if an assembly step is allowed and to introduce the notion of an assembly pool: unit-length
strings cannot be assembled from shorter strings and, hence, are inaccessible, forming the initial assembly pool,
and strings present in the assembly space can not be assembled again, possibly using different pathways, as they
would not be unique. What is allowed is the evolution of assembly pathways to make them shorter. We also
comment on certain results of [1], showing that the Assembly Steps Problem, not the Assembly Index Problem,
has been proved in the referenced study to be NP-complete.
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1 Introduction

A recent study [1] shows that assembly theory offers a distinct approach and answers different
questions than computational complexity theory with its focus on minimum descriptions via com-
pressibility and discusses fundamental differences in the ontological basis of assembly theory and
the assembly index as a physical observable, which distinguish it from theoretical approaches to
formalizing life that are unmoored from measurement. Furthermore, the study [1] claims to contain
the proof of the conjecture posed in [2] that the Assembly Index Problem is NP-Complete. In general,
it argues to show that any instance of the Vertex Cover Problem, which is known to be NP-Hard, can
be reformulated as an instance of the Assembly Index Problem. Finally, it leaves open the question of
whether the noncommutative concatenation version of string assembly is NP-Complete; its authors
see no alternative to reconcile the commutativity of the assembly step with the noncommutativity of
the string concatenation (cf. [1], Supplementary Material, footnote 101.).

Here, we show that such a reconciliation is, in fact, possible by providing an alternative definition
of the assembly space. We also show that it is the Assembly Steps Problem, not the Assembly Index
Problem, which has been shown in [1] to be NP-complete. Hence, finding if a string can be assembled
along a given path in a given number of steps is NP-complete. But we do not know if finding the
minimal number of assembly steps leading to this string, that is, the assembly index of this string, is
NP-complete.

1Here, all references to [1] relate to the Supplementary Material of [1].
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2 An Alternative Definition of an Assembly Space

An assembly spaceΩ = (Γ, ϕ) is defined in [1] (cf. Definition 8) as an acyclic directed graph Γ = (V,E),
where V is the set of vertices and E is the set of edges together with an edge labeling map ϕ : E ∋ e→
v ∈ V. Γ contains a finite and non-empty set of vertices Src(Γ) = BΩ that form the basis of Ω, each
reachable only from itself. All remaining vertices of Γ are reachable from a vertex in BΩ.

The edge labeling map ϕ cleverly defines the assembly step. Namely

e = (x, z) ∈ E(Ω) ∧ ϕ(e) = y ∈ V(Ω) ⇔ ∃ e′ = (y, z) ∈ E(Ω) : ϕ(e′) = x, (1)

allowing to write e = (xy, z), e′ = (yx, z), and

e = (xy, z) ∈ E(Ω) ⇔ e′ = (yx, z) ∈ E(Ω). (2)

However, the commutativity of the relation (2) cannot imply the commutativity of the string
concatenation. If all assembly objects in V(Ω) are strings (xy, xy) ∈ E(Ω) does not imply (yx, yx) ∈ E(Ω),
as might be expected for string concatenation, but it actually implies also (yx, xy) ∈ E(Ω). Therefore,
a string assembly space is endowed in [1] with the additional property (cf. [1], Definition 19 and
Eq. (10))

(xy, z) ∈ E(Ω) ⇒ z = [xy] ∨ z = [yx], (3)

and likewise for the 2nd edge (yx, z) ∈ E(Ω).
However, the property (3) makes the terminating string z unresolvable if x , y. Consequently, z

cannot be used in subsequent assembly operations. Here, we provide an alternative definition of the
assembly space.

Definition 1 (Assembly Space). An assembly space Ω = (C,E, ϕ) is an acyclic digraph of strings C = {Ck},
k ∈N where all b ∈N unit length strings (basic symbol(s)) are inaccessible source vertices and the remaining
strings are 2-in-regular assembly steps vertices, E is a set of edges, and ϕ : E ∋ e→ Ck ∈ C is an edge labeling
map, wherein an assembly step s > 0 consists of forming a new string Cz from two not necessarily different
s−1+b strings Cx, Cy by concatenating them with each other, establishing edges e = (Cx,Cz) and e′ = (Cy,Cz),
and assigning, strings Cx, Cy to edges e′, e using ϕ as

Cz = Cx ◦ Cy = strcat(Cx,Cy) ⇔ ϕ(e) = Cy ∧ ϕ(e′) = −Cx,

Cz = Cy ◦ Cx = strcat(Cy,Cx) ⇔ ϕ(e) = −Cy ∧ ϕ(e′) = Cx,
(4)

where ◦ denotes the string concatenation (strcat) operator.

The definition of edge labeling map (4) is possible if only b > 1, i.e., for more than one basic
symbol, as in that case we can say that a given inaccessible symbol is the 1st one, another is the 2nd

one, and so on; we can sort them. Otherwise, the notion of a concatenation direction is pointless for one
symbol only. Contrary to the previous definition of the labeling map ϕ [1], the relation (4) preserves
the commutativity of the assembly step but defines the order of concatenation of the strings, as - in
general - for different strings Cx , Cy ⇔ Cx ◦ Cy , Cy ◦ Cx. The relation (4) is superfluous if the
vertices defining the directed edges ofΩ are strings, as any edge e = (Cx,Cz) unambiguously resolves
to either e = (Cx,Cx ◦Cy) or e = (Cx,Cy ◦Cx). For example, the edge e = ([010], [0101]) unambiguously
resolves to e = ([010], [010] ◦ [1]). However, this relation is convenient, if the strings are associated
with numerical labels.

The definition 1 is consistent: all vertices are unique (in any standard graph all vertices should
be unique), and all are strings. Since an assembly step always consists of joining two parts only [4],
this can be thought of as the left and right fragments of the newly formed string [3], and those strings
that can be the result of concatenation of two shorter strings are assembly step 2-in-regular vertices,
while unit-length strings are inaccessible. Remarkably, the uniqueness of each vertex is the sufficient
criterion to establish if an assembly step is allowed (cf. [1], Definition 10) and to introduce the notion
of an assembly pool: vertices (strings) present in the assembly space can not be assembled again,
possibly using different pathways, as they would not be unique; they can only be used in assembly of
other strings. What is allowed is the evolution of assembly pathways to make them shorter, as shown
in Figure 1. This evolution seems to be stimulated by the trend to decrease the assembly depth [3].

2 https://ipipublishing.org/index.php/ipil/
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Figure 1: The evolution of assembly pathways leading to a string [0101] to make them shorter and minimize the assembly depth, also
illustrating the definition of the edge labeling map ϕ for Cx , Cy : ϕ(e) = Cy ⇒ Cz = Cx ◦ Cy, ϕ(e′) = −Cy ⇒ Cz = Cy ◦ Cx (”blue arrow
goes first” rule). Numbers in red discs denote the number of steps.

3 The Assembly Steps Problem is NP-Complete

In order to show that any instance of the Vertex Cover Problem (G, k), where G = (V,E) is a graph,
V(G) is the set of vertices and E(G) is the set of edges and k is the cardinality of a set of vertices that
includes at least one vertex of every edge of G, which is known to be NP-Hard, can be reformulated
in polynomial time as an instance of the Assembly Index Problem, the following procedure is offered
in [1] (cf. Section 4.2). For a given instance of the Vertex Cover Problem (G, k), where τ ≤ k < |V(G)|,
and τ is the vertex cover number (the size of a minimum vertex cover), an instance of the Assembly
Index Problem (Ω,Cx, a(N,b)(Cx)) is constructed, where Ω is a constructed assembly space, and Cx is
the target string for which the assembly index a(N,b)(Cx) is to be determined. It is then claimed that a
certificate for the Vertex Cover Problem

C = {vl ∈ V(G) | Cl = [0vl0] ∈ V(Ω′)} (5)

containing a subset {vl} of vertices of G that includes at least one vertex of every edge of G can be
used to produce a certificate (Ω′,Cx, a(N,b)(Cx)) for the Assembly Index Problem and vice versa, where
Ω′ ⊂ Ω is a rooted subspace (cf. [1] Definition 15) of the assembly space Ω containing only a proper
subset {Cl = [0vl0]} of the strings of the form Ck = [0vk0],∀vk ∈ V(G). Hence, such an instance of the
Assembly Index Problem would be logically equivalent to an instance of the Vertex Cover Problem
from which it was constructed.

The construction of Cx (cf. [1], Section 4.2) begins with defining the basis of the assembly spaceΩ
(cf. [1] Eqs. (17), (50)), i.e., the unit-length strings

BΩ = {0, 1, 2, . . . , |V(G)|}, (6)

containing |V(G)| symbols of vertices V(G), and a special symbol that here we call ”0” (it is defined as
”#” in [1]). Hence, b = |BΩ| = |V(G)| + 1. Then, a set of 3|V(G)| vertex strings

Ck1 = [0vk], Ck2 = [vk0], Ck3 = [0vk0], ∀vk ∈ V(G) (7)

is assembled (cf. [1] Eq. (18)). Subsequently, a set of |E(G)| edge strings

C j = [0vs j0vt j0], ∀e j = (vs j , vt j) ∈ E(G) (8)

is assembled (cf. [1] Eq. (19)). The last step of the construction of Cx is a sequence of 2|V(G)| strings

S0 = 0,
Sk = Sk ◦ [0vk],∀vk ∈ V(G),

S|V(G)|+1 = S|V(G)| ◦ [v10],
S|V(G)|+k = S|V(G)|+k−1 ◦ [vk0],∀vk ∈ V(G),

(9a)

and |E(G)| strings

S2|V(G)|+1 = S2|V(G)| ◦ [0vs10vt10],
S2|V(G)|+ j = S2|V(G)|+ j−1 ◦ [0vs j0vt j0],∀e j = (vs j , vt j) ∈ E(G),

(9b)

https://ipipublishing.org/index.php/ipil/ 3
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defined in [1] by Eqs. (20)-(25), where the target string Cx = S2|V(G)|+|E(G)| is defined as the last string
of this sequence and

|V(Ω)| = |V(G)| + 1 + 3|V(G)| + |E(G)| + 2|V(G)| + |E(G)| = 6|V(G)| + 2|E(G)| + 1. (10)

Finally ([1], Section 4.2.3) it is claimed that given (Ω′,Cx,nvcp(Cx)) is a certificate for the Assembly
Index Problem if the set (5) is a vertex cover of G with size k, i.e. a certificate for the Vertex Cover
Problem is given, wherein nvcp(Cx) is the assembly index of string Cx and

nvcp(Cx) = 4|V(G)| + 2|E(G)| + k ⇔ |V(Ω′)| = nvcp(Cx) + |BΩ′ | = 5|V(G)| + 2|E(G)| + k + 1, (11)

which depends on k and is minimal if k = τ.
By construction, the basic symbols (6), the edge strings (8), and the sequence strings (9a) and (9b)

contained in Ωmust also be contained in Ω′ (certificate). However, the vertex strings (7) of the form
[0vk0] are the exception, as each of the edge strings (8) can be assembled from strings (7) in one of the
two mutually exclusive steps (cf. [1] Eqs. (53), (54))

[0vs j] ◦ [0vt j0] = [0vs j0vt j0] or [0vs j0] ◦ [vt j0] = [0vs j0vt j0], (12)

leaving some of the strings [0vs j0] or [0vt j0] redundant. It can be seen by comparing the cardinalities
of the spacesΩ (10) andΩ′ (11), which - as expected - leads to k < |V(G)|. There are 3|V(g)| strings (7)
in Ω and only 2|V(g)| + k such strings in Ω′.

By construction (9a), (9b), the target string has the form

Cx = Cvs ◦ Ces = [001020 . . . (|V(G)| − 1)0|V(G)|1020 . . . (|V(G)| − 1)0|V(G)|0] ◦ Ces, (13)

where the Cvs = S|V(G)|+k is a vertex-specific part of Cx depending solely on |V(G)| and its explicit
form is given by the formula (9a), and the Ces is an edge-specific part of Cx, generated by the formula
(9b), and depending both on |E(G)|, edge vertex assignments and the order of labeling of the edges
of graph G. However, |Ces| = 5|E(G)|, as the length of each edge string (8) is five and there are |E(G)|
such strings in Cx and Ω′. Therefore, the length of the target string is

Nx = |Cvs| + |Ces| = (4|V(G)| + 1) + 5|E(G)|. (14)

Furthermore, by construction Cvs contains two copies of the string Clng = [1020 . . . (|V(G)| −
1)0|V(G)|] of length Nlng = 2|V(G)| − 1 having the assembly index equal to alng = 2|V(G)| − 2 as it does
not contain any repetitions of substrings. We can take advantage of the fact that each m copies of an
n-plet Cn contained in a string decrease the assembly index of this string at least by m(n−1)−a (Cn) [3],
where a (Cn) is the assembly index of this n-plet, to estimate the upper bound for the assembly index
of Cx reduced by the presence of these two copies of Clng. Furthermore, excluding the degenerate
cases of empty and disjoint graphs G, we can further infer some information about Cx. That is, since
any vertex vk ∈ V(G) is a part of some edge e j ∈ E(G), Cx contains at least two repetitions of doublets
[cl0] (or [0cl]), with l = 1, 2, . . . , |V(G)| − 1 as the string Clng also contains |V(G)| − 1 such doublets,
and each repetition decreases the assembly index by one. Hence, the upper bound must be further
decreased by |V(G)| − 1. Finally, each string Cx contains |E(G)| + 1 repetitions of a doublet [00] and,
hence, the upper bound must be further decreased by |E(G)|. Therefore, the initial upper bound on
the assembly index that amounts to Nx − 1 [4] if Nx ≤ b2 + b + 1 [3] decreases to

ndec(Cx) ≤ (Nx − 1) − [2(2|V(G)| − 2) − (2|V(G)| − 2)] − (|V(G)| − 1) − |E(G)| = |V(G)| + 4|E(G)| + 3, (15)

which, in contrast to nvcp(Cx) (11), is independent of k.
We have examined a few simple graphs, shown in Figure 2, obtaining the results listed in Table 1.

As an example, consider the trivial graph G = (V,E), shown in Figure 2(b) having two edges connected
at one vertex. Hence, its vertex cover number is τ = 1. In this case, (10) |V(Ω)| = 6 · 3 + 2 · 2 + 1 = 23
and the target string generated by sequences (9a) and (9b) has the form

Cx = [00102031020300102002030]. (16)
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Figure 2: Simple graphs we examined: one edge (a), two edges (b), three edges (c), square (d), ”EM rocket”(e), a complete graph K5 (f).
Red circles indicate a minimum vertex cover.

Table 1: Assembly indices a(Cx) of target strings Cx constructed [1] for the Vertex Cover Problem graphs G; minimum and maximum
assembly indices a(Nx)

min , a(Nx ,b)
max for Nx; numbers of steps leading to Cx used in [1] (nvcp(Cx)) and derived here (ndec(Cx)), for examined graphs.

Graph |V(G)| |E(G)| τ Nx a(Nx)
min a(Cx) ndec(Cx) nvcp(Cx) a(Nx,b)

max
one edge 2 1 1 14 5 8 9 11 12

two edges 3 2 1 23 7 13 14 17 21
three edges 4 3 1 32 5 18 19 23 30

square 4 4 2 37 7 20 23 26 33
”EM rocket” 6 7 3 60 7 32 37 41 58

K5 5 10 4 71 9 40 48 44 < 56

As the vertex cover of the graph G is the vertex 2, the subspaceΩ′ (the certificate) is devoid of triplets
[010] and [030], since the edges (1, 2) and (2, 3) share the vertex 2, and the edge strings (8) could be
assembled as [01|020] and [020|30]. Therefore, the number of steps on the assembly pathway of Cx
defined by Ω′, given by the relation (11), amounts to nvcp(Cx) = |Ω| − |BΩ| − 2 = 17, as shown in
Figure 3(a) also illustrating the assembly depth [5] (d(Cx) = 9) of this string: 7 steps (1-7) for vertex
strings (7), 2 steps (8, 9) for edge strings (8), 6 steps (10-15) for sequence strings (9a), and 2 steps (16,
17) for sequence strings (9b)) which corresponds to the vertex cover number τ = 1, if only the string
(16) is assembled using the set of allowed assembly operations defined by the equations Eqs. (38)-(45)
of [1].

However, imposing such a set of allowed assembly steps deviates from the principles of assembly
theory that assume the possibility of assembling any object from any two objects in the assembly pool.
Even if we assume that only some steps are allowed and some are not due to peculiarities of the
assembled data structures, this is certainly not the case for strings, considered in [1] in the proof of
Lemma 3. All strings are possible and mathematically well defined [6]. What could be the reason for
allowing the assembly of a string [ABC] and disallowing the assembly of a string [BCA] from a set of
basic symbols {A,B,C}?

Therefore, the assembly index of the string (16) is a(Cx) = 13. One of the shortest pathways of the
string (16) is shown in Figure 3(c) with d(Cx) = 10. A quadruplet [1020] present in two independent
copies is assembled in step 5, 5-plet Clng = [10203] present in two copies is assembled in step 6.
Furthermore, Cx contains two independent copies of [00] (at the beginning) and [20] (at the end). A
slightly longer pathway leading to the string of length (15) is shown in Figure 3(b).

4 Conclusions

The study [1] shows that the Assembly Steps Problem, that is, a problem of determining if a given
string can be assembled in a given number of steps according to principles of assembly theory, can
be reformulated as the NP-hard Vertex Cover Problem, that is a problem of determining if a given
set of vertices of a graph contains at least one vertex of each edge of this graph, and hence the
former problem is also NP-hard. Furthermore, the study [1] shows that, since a proposed solution
(certificate) to the Assembly Steps Problem can be checked for correctness in polynomial time, the
Assembly Steps Problem becomes NP-complete.

However, based on a few simple graphs, we have shown here that the proposed construction of
an assembly space from a graph (a certificate) to map the correspondence between the Minimum
Vertex Cover Problem and the Assembly Steps Problem does not reflect the shortest pathway leading
to this string and hence does not correspond to the Assembly Index Problem.

In this study, we have also answered in the affirmative the question posed in [1]: using the
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Figure 3: Three assembly spaces of the same string Cx = [00102031020300102002030]: the pathway to produce a vertex cover certificate [1]
(nvcp(Cx) = 17 steps) (a), the pathway taking into account the general distributions of substrings in all strings Cx (ndec(Cx) = 14 steps) (b),
a shortest, assembly index pathway (a(Cx) = 13 steps) (c).

definition of the assembly space of strings 1 and the procedure of constructing the Assembly Steps
Problem to correspond to the Vertex Cover Problem [1] shows that the noncommutative concatenation
version of the Assembly Steps Problem is also NP-Complete.

Unfortunately, we still do not know if the Assembly Index Problem is NP-Complete.
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