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1 Introduction

The so called, Hailstone sequences are the iterates of a discrete branched dynamical system
over positive integers that were first introduced by Lothar Collatz [?] at 1937. It became
alternatively known as the ’3x+1’ problem due to the particular formula used in one of its
branches.

Lately, the notion of a generic ’3x+1’ semigroup was also introduced [?][?]. At 1972,
Conway had already generalized the problem in the generic form (aix + bi), 0(modbi) in a
manner that allowed him to create a programming language called ’fractran’ which was
of the same power with a universal Turing machine thus being able to derive standard
undecidability results[?].

A very recent review of the problem has been given by Lagarias[?]. Also, recent results
on connections of this problem with cellular automata appeared which are reviewed in [?]
together with previous similar attempts. Mostly, strong associations with Wang tiling ma-
chines have been introduced in the work of Sterin[?] with possible connections to biological
complexity.

An analysis of the resulting Hailstone sequences of iterants from a physicist’s perspective
appeared in [?] and [?]. It is hoped that the preset analysis will also be of interest for other
physically inspired toy models for stochastic and fractal processes.

In the next section, an appropriate reformulation of the Hailstone iteration is introduced
which makes use of a special function also associated with the so called dyadic valuation[?].
This allows transforming the original branched process to a single branch one with a unique
fixed point.
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In section 3, a set of necessary definitions are introduced for palindromic words or
palindromes based on fixed maximal length binary expansions as fixed points of the reflection
group over such expansions. A hierarchical construct is used to extract certain scaling maps
associating each expansion length L with its next one across different intervals of exponential
length revealing the underlying tree structure of such patterns.

Certain properties of these hierarchies of patterns are discussed and a crucial property is
proven that provides a direct link with the original Hailstone process.

In section 4, the role of palindromes and the associated reflection group is discussed
revealing an interesting type of interaction between a form of ’mirror’ images inside the
main process.

Furthermore, two indices in the form of binary probability measures are proposed for
the study of the conjectured global convergence, associated with both the inner reflective
structure as well as the internal complexity of the binary patterns produced by the Hailstone
process.

2 Reformulation of the Collatz-Hailstone (CH) iteration

The standard, or 3x + 1 Collatz-Hailstone process is defined via the branched map

xn+1 =

{
xn/2, 0(mod2)
3xn + 1, 1(mod2) (1)

Let us introduce the two auxiliary maps f0(x) = x/2 and f1(x) = 3x + 1. It is obvious that
any invocation of f0 would cause this iteration to enter a cycle any time xn reaches a power of
two since it would then remain on the first branch until it reaches 1 with the second branch
mapping 1→ 4 immediately after.

On the other hand, f1 always maps odd integers to even integers thus any iteration stays
at the second branch only once while looping over the first branch until all powers of two
divisors are exhausted.

The particular sequence of all integers after removal of its 2 factors is already known as
the odd part sequence, catalogued as A000265 in the OEIS database[?]

The resulting symbolic dynamics of branch execution then is intimately related with
binary divisibility or equivalently, the amount of zeros present at the start of any binary
expansion. This is another well known sequence in computer science under the name
of trailing zeros(TZS), also catalogued as A007814 [?]. Any integer is then represented as
x = σodd(x)2t(x) where t(x) denotes specific values of the TZS.

In terms of the run length analysis of symbolic sequences[?],[?] where every bit string of
length L is represented by an alternating polynomial, the TZS corresponds to the zero order
coefficient for all compressed binary expansions. This will be presented in more detail in the
next sections.

When represented as a sequence over all integers, the TZS is equivalent to the so called,
2-adic valuation, the first of the π-adic valuations corresponding to the expression of all the
exponents of prime factorization as sequences[?]. The structure of TZS encodes a special
tree graph which in the context of word combinatorics is related to the Zimin words or, more
generally sequipowers[?]. It is then abstractly similar to the celebrated fractal ABACABA
sequence[?].

The simplest approach to obtain a concrete formula for computing the TZS utilises the
binary divisibility by successive powers of two so that one can write

t(x) =
∑l2(x)

i=0 1χ(mod(x, 2i) = 0)

where l2(x) = 1 + ⌊log2(x)⌋ is the binary logarithm standing for the maximal power of
two of the expansion of x. Similar expression will also arise in higher alphabets in the more
general setting posed by Conway’s fractran. In the case of the binary alphabet, it is also
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possible to rewrite the same using the Hamming distance between x and x − 1 as prescribed
in the relevant OEIS page[?]. A graphical representation of the 2t(x), x ∈ [0, ..., ] is shown in
figure 1.
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Figure 1: The tree structure of the TZS associated even factors

Since, knowledge of a complete shift in the exponents of every 2 factor is possible before-
hand, it should also be possible to rephrase the original problem so that any computation
would spend only a single step to each of the two branches given a complete knowledge of
the total shift 2−t(x) thus effectively realising the whole bunch of f t(x)

0 total application of the
first map.

Such a transcription is facilitated by rewriting a composite which takes into account both
cases of f n

0 ◦ f1 and f1 ◦ f m
0 at once by noticing the equivalence of f1 with 3x + mod(x, 2) in

which case the original CH in (1) is rewritten as:

xn+1 = 2−t(xn)(3x +mod(xn, 2)) + 1 −mod(xn, 2) (2)

The expression in (2) automatically sends to either of the two branches depending on the
(mod2) class. It is preferable to rewrite it also in the form

xn+1 = A(xn)xn + B(xn)

where A(xn) = 3/2t(xn) and B(xn) = 1 +mod(xn, 2)(2−t(xn)
− 1).

It is immediately obvious that B(xn) = 1 for all cases. This is simply because of the
complementarity of t(x) with mod(x, 2) since all roots of t(x) are odd integers. Therefore the
final reduction of CH in (1) is equivalent to the expression

xn+1 =
( 3
2t(xn)

)
xn + 1 (3)

This final form will exactly reproduce the same elements of the original iterations that
do not contain successive binary shifts. A possible termination condition for this type of
iteration can be given as mod(log2(xn, 2), 1) = 0.

The coefficient that appears in (3) is of special importance and stands for the bridge
between the original problem and that of the palindromic binary strings as explained in the
next section. The fixed points of the final map in (3) are found via the standard condition
f (x) − x = 0 rewritten as (

1 −
1
x

)
2t(x) = 3 (4)
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Given the structure of the TZS for any expansion of length L in a maximal L interval
[0, ..., 2L

−1] it holds that 0 ≤ t(x) ≤ L−1. Restricting search in all powers of 2, (x = 2l : t(x) = l)
immediately cancels out the exponential term in (3) leaving only the condition 2l

− 1 = 3 so
that the only possible integer root in (4) is at x = 4.

In the next section some appropriate definitions are introduced which will make it possible
to establish the connections of the new single branch map with the issue of palindromic words
in fixed length binary expansions.

3 Hierarchies of Palindromes

3.1 Preliminary definitions

The particular construct presented requires the introduction of constant length binary ex-
pansions for all words inside an interval. When expressed this way, all binary patterns inside
an exponential interval are said to form a so called, ’Hamming Space’ the reasoning being that
all such expansion are then forming a norm, linear vector space the norm being given be the
Hamming distance[?].

All such representations require that any binary expansions are also characterized by
a number of leading zeros. This leads to an additional ambiguity with the definition of
certain operators acting on words like reflections or mirror inversions and the construction
of palindromic words due to the need for additional parametrization for the expansion length
required.

Because of this necessary to setup a different than usual representation which is only pos-
sible across a self-similar hierarchy of lexicographically ordered sets that can be represented
as special asymmetric matrices of all patterns. To do this, the following terminology will be
useful.

A number M(L) = 2L
−1 is to be called a Mersenne number and an interval s(L) = [0, ...,M(L)]

is to be called a Mersenne interval. A self-similar sequence of intervals

s(1) ⊂ s(2) ⊂ · · · ⊂ s(L) ⊂ · · ·

is to be associated with a set of L × 2L matrices of lexicographically ordered bit patterns
as a representation of each SL in 1 − 1 correspondence with the binary expansion of the row
index j ∈ s(L) via the polynomial representation.

The particular choice is justified by a variety of reasons including the fact that the above
is also a well formed hierarchy of closures for certain binary operators like the bit-wise XOR
which is known to have the group property.

It is also a known fact that each column of any SL matrix representation is identical
with the paths of a symmetric, homogeneous rooted binary tree thus corresponding to a
self-similar hierarchy of binary tree structures.

Equivalently, the same can be phrased as an arithmetic equivalent of a hierarchy of
Hamming Cubes or, subspaces of an L-dimensional hypercube, due to the fact that every
element of a Hamming space associated with a fixed length binary expansion can be put into
a one-to-one association with the edges of such a hypercube[?]

The particular form of the hierarchy of lex-ordered matrices is also known in another
context as a set of Orthogonal Designs[?] when written in the equivalent {±1} alphabet instead
of {0, 1}.

To further facilitate an exchange between the language of sequences and binary patterns
of constant length, it is appropriate to denote |w| ∈N for the arithmetic value of each binary
word via the use of an ”encoding” map

p : |w| = p(w) =
L−1∑
i=0

ai2i
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and its abstract ”decoding” inverse

p−1 : [a0, ..., aL]
p−1

← |w|

This helps establishing a direct association of the hierarchy of intervals with the hierarchy
of matrices as

s(0) s(1) s(2) · · ·

[0] S1 S2 · · ·

δ δ

p−1 p−1

∆

The additive action of the δ map is to simply increase the cardinality of any previous
ordered list representing any Mersenne interval by applying to each member the same rule
and perform a list concatenation like

δs(L)→ s(L + 1) = [s(L), s(L) + 2L],L = 0, 1, · · ·

Correspondingly, each new application of the decoder P−1 results in an equivalent self-
similar action denoted by ∆ comprising a concatenation of a copy the previous S(L) matrix
followed by the addition of a new top row of precisely L zeros to be followed by a left to
right flip of its not-complement like:

S1 =
[
0 1

]
→

[
0 0
0 1

]
→ S2 =

[
0 0 1 1
0 1 0 1

]
Thus, the whole hierarchy comprises a sequence of internal 2-complements and reflec-

tions.
Effectively, all rows of any member matrix of the hierarchy is a periodic sequence spanning

an exponential sequence of periods that can be directly computed via either a Boolean or an
equivalent arithmetic formula as:

Si, j∈[0,··· ,2L−1](L) = 2−i( j ⊗ 2i) = mod
(
⌊

j
2i ⌋, 2

)
, i = 0, 1, · · · ,L − 1 (5)

where ⊗ stands for the bit-wise AND operation.
Moreover, one may consider the action of arbitrary automataA accepting some or all of

the rows of each member SL. There are two main classes of possible automata described as
either a)Indicators or maps A : SL → {0, 1} asserting existence of some property of a binary
pattern or b)Transducers: A : SL → SN.

Restricting attention to such automata or their equivalent Turing machine expressions
that halt, one may introduce an upper bound as max(L,N) such that every such halting
automaton represents an endomorphism in SLmax. It is then possible to project the action of
all such automata into a new sequence or production via:

sA ←
(
p ◦ A ◦ p−1

)
s(L) (6)

This implies the reduction of any such computation into a chain of maps producing a
hierarchy of sequences of exponentially increasing length
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s(0) s(1) s(2) · · ·

[0] A[S1] A[S2] · · ·

sA(0) sA(s(1)) sA(s(2)) · · ·

δ δ

p−1

δ

p−1

∆

p

∆

p

g g g

Computability of the action of the new g map in terms of simple arithmetic formulas is a
separate and difficult issue in general for arbitrary automata. Whenever possible, one may
exchange the action of any such automaton with the resulting sequence via a recursive list
concatenation or even the generating function of the resulting sequence if sum-able at all.

A trivial example can be given in case of an automaton of which the action equals some
permutation π of symbols across w ∈ SL in which case one can apply a ’transfer’ principle
based on the constant expansion length as:

L−1∑
i=0

aπ(i)2i �
L−1∑
i=0

ai2π(i)

For instance, inversion of all positions resulting in a mirror inversion of all words will
also result in a map of the original sequence of natural numbers in an iterative sequence
given by:

r(i + 1)← [r(i), r(i) + 2L−i−1], r(0) = 0

Another simpler alternative of scaling maps for reflections is presented in the next section.
Notably, the sequence of applications of any such scaling map follows a well known

pattern of another fundamental fractal sequence the so called, Sum-of-Digits sequence[?] as:

I g g g(2) g g(2) g(2) g(3), · · · , gsd(n)

.
following the pattern:

0 1 1 2 1 2 2 3 · · ·

The sd(n) sequence also admits the simplest arithmetic scaling map g(x) = x + 1 fol-
lowing the linear staircase of the natural lengths or maximal powers of two present in any
lexicographically ordered set of binary patterns.

Sequences for which the leading zeros may play a role in their definition will not admit
as simple a recursion as above and it will often exhibit a similar recursive structure with a
branched map acting differently on the first and second part of a list concatenation scheme
in the abstract form.

g(s(i + 1))← [(g0)(s(i), i), (g1)(s(i), i)]

where the iteration index i may have to be explicitly included in general. Equivalently, the
resulting compositions can always be extracted by a symbolic binomial expansion (g0 + g1)L.
The particular case of fixed length reflections and palindromes is analyzed in the next section.
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3.2 Palindromes and the fixed length reflection group

Let w a binary word and R(w,L) : SL → SL also denoted as RL heretofore, an order reversing
map also called the reflector heretofore, with SL the set of all 2L binary strings of same length
L.

Then if w = [a0, · · · , aL], its mirror inversion or reflection is denoted asRL(w) = [aL, · · · , a0].
RL is then one of the two natural involutions for any words in every SL the other being the
2-complement.

The hierarchical construction of the previous section imposes a discrimination between
even and odd order palindromes depending on L being even or odd as well. Thus for all
odd order matrices S(2k+ 1) a palindrome may leave the ”central” symbol at k+ 1 unaltered
and only invert the order of the first k symbols so that:

a2k+1 = a0, ..., a2k+1−i = ai, ..., ak+2 = ak, i = 0, 1, ..., k

This class will not be treated further heretofore.
While the 2-complement is fixed point free in any SL, the reflection operation will admit

a set of fixed points known as palindromic words or simply, palindromes.
By construction the number of fixed points of every even order S2k must necessarily

contain the whole reflected set in Sk since anyone of them can get reflected thus forming a
member of the set of fixed points of the reflector operator over any S2k. Hence, the cardinality
of the sets of fixed points must also form a sequence of 2k fixed points of the R2k action over
any S2k across the hierarchy. Obviously the ’edges’ of each set comprising the all zeros and
all ones patterns are always fixed points.

From now on the notation RL(|w|) will be interpreted as the expanded form of (6), that
is

(
p ◦ R ◦ p−1

)
(|w|) which acts on the valuation of the word w by expanding, processing

and again contracting to a new integer. Thus the total action over the sequence of natural
numbers inside any Mersenne interval will always result in a new sequence in that same
interval parameterized by the additional length parameter L.

By definition, a reflector has the group property since it sends one to one, any integer
inside the same Mersenne interval thus being equivalent to a permutation. This is one of the
main reasons for using the hierarchy over fixed length expansions. Otherwise, any power
of two would be mapped to a one after bit order reflection thus failing to be a bijection.

The reflector does not act homomorphically over the standard arithmetic addition and
multiplication but it does obey an anti-homomorphism with respect to the arithmetic equiv-
alent of concatenation

RL(|x| + |y|2L) = RL(|y|) + RL(|x|)2L

The difference of fixed length reflections with leading zeros becomes more evident by
noticing the appearance of a bit shift in any newly formed sub-sequence of reflected integers
due to inversion of position of the leading zeros blocks.

Thus, a fixed length reflection can also be subsumed via the use of two scaling maps
corresponding to the g map of the chain diagram of previous section leading to two different
iterative list concatenation methods as

r(s(L + 1))← [g0r(s(L)), g1r(s(L))], r(s(0)) = 0

where now gi(x) = 2x +mod(i, 2) applied point-wise across all previous list elements.
Before coming in the subject of fixed length palindromes and their properties it is impor-

tant to add another toolbox in the description of fixed length binary expansion property of
every fixed length reflected binary expansion which binds them with the TZS as well as the
leading zeros sequence or LZS in a particularly useful way.
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For all such binary words, an alternative compressed representation exists given in terms
of a run-length encoding in the form of an alternating polynomial given as a bijective map

rl(w) : SL ↔ ZL : [a0, · · · , aL−1]↔ [±c0(|w|) · · · ,±cm(|w|)]

under the convention of a minus sign for a block of zeros and vice versa. Each coefficient
ci counts the length of a block of same symbols marking with a ∓ sign whether it is a zero or
one respectively.

An additional constraint over all alternating coefficients results from the fixed length
expansions in the form

m(n)∑
i=0

|ci| = L,n ∈ s(L)

Due to the bijective nature of this mapping all distinct integer partitions[?] of L exist inside
the set of RL representations of the members of any SL since any such can always be turned
to a binary pattern of same length.

The first and last of these coefficients, when expressed as sequences over all integers in the
associated Mersenne interval are of special importance. In particular, the TZS is equivalent
to all negative values of the first coefficient at even indices c1(2k), and zero for all even indices
while the leading zeros sequence (LZS) is identified with cm(n),n ∈ s(L).

The latter is naturally associated with the binary logarithm l2(n) via cm(n) = L − l2(x) in
accord with the fixed maximal length representation used here.

The three fundamental sequences characterizing each binary pattern given by the triplet
l2, tn, ds2 share the same range in [0, · · · ,L]. Moreover, the TZS and the max. bit sequence l2
share the same multiplicities of values.

The following proposition can also be proven:
Let tn be a sequence of all t(n),n ∈ s(L) and let rn the sequence of reflected binary expan-

sions as integers over the same interval. Then for all L, the second is a decreasing order
sorting permutation of the first or (tz ◦ r)(n) � sort>(tz(n)).

This is a trivial result of the simultaneous fixed length reflection of all binary words in any
interval which affects an exchange of the first and last coefficients in the RL representation
and hence of the TZS with the LZS.

The corresponding permutation then is characterized by the first blocks of zeros being
already sorted in size due to the fact that any leading zeros will have a difference from the
maximal power of two that scales as L− i with every new exponential sub-interval s(i) which
adds a single bit on top of all the previous expansions.

As a result, the permuted integers will contain a decreasing number of all even integers
with 2L−i−1 factors when lexicographically ordered on the first half of the interval with all
odd integers also mapped to the second half carrying over all zero values of the TZS.

Subsequent composition with the standard form of the TZS is then equivalent to a sorted
counting of the number of unique digits in a TZS sequence of the form

1 0 2 0 1 0 3 0 1 0 2 0 1 0 · · ·

The result of such a composition of sequences is shown in figure 2 on all integers in
[0, · · · 210] in a semilog graph to make the staircase structure more pronounced.
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Figure 2: The composite sequence of the TZS over all reflected integers

One can then use directly this result to extract an integer histogram of all unique digits
in any sub-sequence of TZS over any Mersenne interval and which follows a scaling law of
the form 2L−l2(i)−1 in accord with the tree structure also shown in figure 1.

Furthermore, it can be inductively verified that for any maximal interval s(L) the following
relation is always satisfied:

l2(x) + (t ◦ r)(x) = (l2 ◦ r)(x) + t(x) = Lmax (7)

where Lmax =Max(l2(x)).
Given the action of the reflector it is also possible to introduce an arithmetic decomposition

of every palindrome’s integer value of even order as:

P2k(|w|,L) = Rk(|w|) + |w|2k (8)

The expression in (8) utilizes the involuntary nature of the reflector so as to get a sorted
sequence of all possible even palindromes in any SL. This is simply the result of taking two
copies of any SL matrix and perform a horizontal concatenation of the first copy with an
up-down flip of the second copy, something easy to realize in an array language like Matlab
or Octave.

Getting back the corresponding integer values will always result in a sorted sequence
since the single application of RL is equivalent to a permutation but the addition of all
original bits above 2L guarantees this being a sorted sequence.

Let then, ∆PL denote the discrete differences of the sorted sequence in (8) being again
decomposed as:

∆PL(|w|,L) = PL(|w|,L) − PL(|w| − 1,L) = ∆RL(|w|) + 2L (9)

where now

∆RL(|w|) = RL(|w|) − RL(|w| − 1) (10)

It is then possible to prove the below proposition

for all |w| ∈ M(k) and their expansions w ∈ Sk for any k it holds that
∆P2k(|w|) = 3(2k−t(|w|)−1)
where t(|w|) the trailing zeros sequence.
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The proof can be given with the aid of elementary curry-less binary addition performed
on an unbounded or bi-infinite tape of a TM restricted in the case of a successor function
s(|w|) = |w| + 1.

Indeed, adding a single bit at the lower power of any expansion only requires two rules.
Assuming any integer n coded in binary with powers of two from left to right, these rules
are:

• if n is even, the head writes ’1’ in the present position and stops.

• if n is odd, the head moves to the left replacing all 1s with 0s until it reaches the first 0
position where it writes a ’1’ and stops.

Next, consider the case of a bi-infinite tape with the first digit situated at a central cell
with the whole pattern reflected as if by a mirror in the middle. One can alwasy assume a
machine with two heads working in opposite directions but following the same pair of rules.

There can only be transitions from even to odd or from odd to even numbers. In both
cases, any alterations in the first block of digits will not affect the next blocks so that they
cannot contribute to the discrete differences of the resulting sequence of palindromes.

In the first, even-to-odd case, assume an arbitrarily large all 0s block reflected across the
middle point. Then the transition will be of the form:

• a0 · · · 1 0 · · · 0|0 · · · 0 1 · · · a2k

• a0 · · · 1 0 · · · 1|1 · · · 0 1 · · · a2k

Since the whole palindrome is now a new pattern with an expansion of double length, the
newly added 1s in the middle will correspond to a pair of new powers {a, 2a} with a = 2k−1.
Then inevitably, the difference between the new integer advanced by one will have to be
3a = 3 2k−1.

In the second, odd-to-even case, assume again an arbitrarily large all 1s block in which
case any transition will be of the form

• a0 · · · 0 1 · · · 1|1 · · · 1 0 · · · a2k

• a0 · · · 1 0 · · · 0|0 · · · 0 1 · · · a2k

By a similar argument as before, the new 0s block must contain a number of 2t(|w|) 0s.
With both blocks shifted by the same amount of a = 2k−t(|w|)−1 any difference becomes

(22t+1 + 1)a − 2(22t
− 1)a = 3 2k−t(|w|)−1

Consequently, we also obtain the following computationally useful results.
A. The sequence of valuations of palindromic words over any s(k) interval is given by the

sequence of partial summands

P2k(i) = 2k−13
∑2k

i=1 2−t(i),

B. The sequence of reflectors over any s(k) interval is given as

Rk(i) = 2k
(
3
∑2k

i=1 2−t(i)−1
− 1

)
In the light of the relation (7) the previous can be further simplified as:

P2k(i) =
3
2

2k∑
i=1

2−(l2(r(i)) (11)

Rk(i) =
3
2

2k∑
i=1

2−(l2(r(i))
− 2k (12)
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One immediately notices here the presence of the magic factor 3/2t(x) in the total expression
of the corollary 1 for ∆P. This is then used to redefine the dynamics of the modified CH in
(3) in a particular way revealing an interaction between two ’mirror’ worlds.

4 A hidden mirror in the CH dynamics

It is obvious from direct comparison of the expression of the map in (3) and the result in
proposition 2 that one should be able to make a direct substitution as

xn+1 =

(
∆Plmax(xn)

2lmax−1

)
xn + 1 (13)

where now the coefficient numerator in (10) is to be interpreted as:

∆Plmax(xn) = Plmax(xn) − Plmax(xn − 1) = ∆Rlmax(xn) + 2lmax (14)

In order for the substitution to make sense it has to be assumed that each xn is taken inside
an interval s(l2(xn)) which varies.

For this reason it is necessary to use a varying maximal length for the definition of the
reflector as lmax = Max(l2(x)) (practically 2lmax is equivalent to the use of standard libraries
like nextpow2). This becomes necessary due to the fact that there is a hierarchy of different
R sequences or reflective permutation groups across different intervals s(L). On the other
hand, the original conjecture is equivalent to the existence of an upper bound for all such
intervals.

The dynamics in (13) appears now as the result of an interaction of the original variable
with the ’slope’ formed by a discrete derivative over reflections. To further understand this
version of the original dynamics it is necessary to find a reduction of the discrete difference
in some more fundamental sequences like those introduced in the previous section.

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

R(x-1)

R
(x

)

Figure 3: Global map for the reflection sequences

The simplest way is to utilize a global map for the pair {R(x),R(x − 1)}. This is shown
in figure 3, where a scaling law appears to govern the piece-wise linear dependence over
successive intervals.

An arithmetic formula can be found inductively across the hierarchy of intervals utilizing
the particular scaling which follows a similar pattern with that of the sorted TZS in figure 2.

It is then possible to prove inductively for the map of figure 3, the arithmetic interpolant

RL(x) = RL(x − 1) − 2lmax + 3 × 2l(x)−1

https://ipipublishing.org/index.php/ipil/ 35

https://ipipublishing.org/index.php/ipil/


Pr
oo

f c
op

y

Collatz-Hailstone iterations

where now

l(x) = l2(2lmax − x − 1)

It should be noticed that the argument in g performs a kind of parity reflection over any
interval due to the arithmetic equivalent of the 2-complement defined as NOT(x,L) = 2L

−1−x.
Then the original reflector difference reduces to elementary sequences as:

∆Rlmax = 2lmax
(
3 × 2l(x)−lmax−1

− 1
)

(15)

Substitution in (13) using (14) then results in:

xn+1 = 2
(
∆Rlmax(xn)

2lmax
+ 1

)
xn + 1 = 2l(xn)−lmax(3xn) + 1 (16)

What is actually gained in (16) is the expression of the same dynamics as in (3) but this
time avoiding the difficulty of the fractal structure of the TZS sequence.

On the other hand, in the light of relation (7) it is also possible to write (3) as:

xn+1 = 2lmax−l2(R(xn))(3xn) + 1 (17)

The expression in (17) again emphasizes the role of reflections in the overall dynamics
evident in the antagonism between the effective lengths of two mirror images in the exponent
of (17).

Actually, the two expressions have now come full circle since the parity reflection in l is
just another identity in disguise or l(x)− (l2 ◦ r)(x) = 2lmax on the exchange of parity reflections
with the index binary reflections.

This alone is not sufficient to explain the mystery of the conjectured global convergence yet
another alternative is offered in the last section which may be fruitful for further investigation
in juxtaposition with the type of ’mirror’ image interactions presented.

4.1 Convergence as block decimation

From the structure of (3) it is evident that any final convergence to the fixed point of the
dynamics will take place as soon as the trajectory will reach a pure power of two.

In the light of the equivalent RL representation introduced in section 3.2, this can be
phrased as a reduction of the number of blocks since any such is always of the form {0c0 , 1, 0c2}

for any lmax = c0 + c2 + 1.
The originally conjectured global convergence must then be equivalent to a higher prob-

ability of a falling number of blocks leading to what could be termed a ’block decimation’
effect although it is not stepwise homogeneous. A possible strategy for proving the original
conjecture could then start with a proper definition of such a probability.

An effective measure of such a type of binary complexity index can be given in terms of
the number of RL coefficients which may be termed here as the RL Dimension or RLD for
brevity.

The particular type of RLD sequences per s(L) interval also have a fractal character and
can be found via induction over the hierarchy to satisfy a scaling law given by the standard
list concatenation scheme.

rld(i + 1)← [rld(i),R(rld(i)) + σi], rld(0) = 1

where now σi = 1, i = 0, · · · L − 1 and σL = 0 while the reflection operator inverts the list
index order at every step.

A natural property of any such sequence is its invariance under the reflection group
over the indices themselves or simply rld(R(n)) = rld(n),n ∈ s(L) since reflection over fixed
length binary expansions of each index cannot alter the number of the corresponding RL
coefficients.
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An example of such a fractal sequence can be seen in figure 4(a) over s(10) while in figure
4(b) its distribution is compared against the standard binomial distribution of the ’Digit-Sum’
sequence.

Figure 4: (a) Example of an RLD sequence on s(10) and (b) Distributions for ’Digit-Sum’ and RLD on s(10)

The simplest way to utilize these sequences is to define a probability of any odd integer
being mapped to another even one via the ’3x + 1’ map of smaller or larger RLD. Given a
long list of RLD values, this is straightforwardly written as

p<,> =
1

µL(rld)

∑
x=2k+1,x∈s(L)

sign [rld(3x + 1) − rld(x)] (18)

where x runs in all odd values in s(L) and µL(rld) is an appropriate normalization measure
over all 2L values of RLD.

A preferable index for asserting any increase or decrease in the complexity of the resulting
patterns can then be given by the probability mass ratio p</p> which avoids normalization.

Additionally, the previous section finding suggests a correlation of such an index with
the ’interaction’ between mirror images of the expansions of the xn variable via the quantity:

δR(x) = l2(3x + 1) − l2(R(3x + 1)) (19)

The associated probabilities

q<,> =
1
µL

∑
x=2k+1,x∈s(L)

sign(δR)(x) (20)

allow defining another mass ratio as q</q>.
The new ratio can be used to check whether there is an increase or decrease in the

resulting effective expansion length between these images. A decreasing ratio could be
associated with a possible increase in the presence of large binary shifts thus diminishing
the number of blocks to be eliminated.
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Figure 5: Combined probability mass ratios.

Indeed, numerical evidence is in favor of this assumption. Results for a set of intervals
from s(4) up to s(24) are shown in figure 5 for both mass ratios. Interestingly, the lengths ratio
appears saturated soon after the tenth power of two while the block ratio increases almost
constantly in a log scale.

5 Discussion and Conclusions

A methodology for combinatorics of automata was introduced which may offer certain
advantages regarding the extraction of scaling maps and recursive relations over lists as
representatives of properties of fixed length binary patterns.

The particular application in the case of the Collatz-Hailstone dynamics was based on a
coincidence after reformulating the original problem in a way that naturally incorporated
the original branching condition via the use of a number theoretic function known as the
trailing zeros sequence (TZS) otherwise known as the 2-adic valuation of the integers.

When comparing the new form with the sequence of discrete differences of palindromes
defined via the action of the reflection group on a hierarchy of exponential intervals or
closures over the integers, a deeper relation was recognised and further analysed.

It was revealed that internal reflections of the binary forms hidden behind the production
of Hailstone sequences play a role not yet well understood. From a physicist’s perspective it
is tempting to think of this dynamics as a bistable potential with a middle barrier separating
two mirror worlds perhaps amenable to noisy perturbations. Furthering this treatment is
reserved for a future report.

Additionally, there are still unexplored issues regarding the multi-valued character of
the TZS. As a matter of fact, the particular symbolic substitution used in (13) of section 4
could be generalized by simply allowing the index of the palindromic word or its internally
contained reflection to be associated with any integer pre-image of the TZS giving the same
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value say as R(xn)→ R(xn) ± σn where r a random variable restricted each time to the same
level of the TZS.

This brings about an interesting association of the natural tree structure of the TZS with
a well known mechanical analog of the so called, ’Quincunx’ or ’Galton Machine’ [?] One can
think of the additional random variable σn as the result of a falling ball across the quincunx
board made out of integer spacings with its associated height variable thus recreating the
exact same values of the TZS.

This leads to the amazing observation that despite σn being binomially distributed the
Hailstone sequences would remain absolutely insensitive and hence the dynamics of this
type would be an invariant of such a perturbation!

It is an ambitious project to carry over similar generalizations that overcomes the scope
of the present short report which was based on a rather trivial original observation yet it was
laid here in the hope that it may be of aid in future attempts towards a formal proof of the
original conjecture by Collatz.
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