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The relation between the entropy (in thermodynamics) of Boltzmann and of Shannon infor-
mation (in communication), has recently been discussed by Vopson (e.g. Refs [1,2]). Amongst
several interesting similarities and differences pointed out by Vopson, one is that writing
information to a computational device increases entropy. This assertion appears counterin-
tuitive because entropy is often described as negative information. Nonetheless, it appears
much more natural when expressed in terms of a definition of information proposed by the
present author BR. There are, of course, other kinds of information, e.g., Kullback-Leibler,
Fano mutual, and Chaitin information [3]. These lie closer to the author’s approach discussed
below, but there are fundamental differences. Some have been touched upon by others (e.g.,
Refs [4-6]), but these are relatively recent and lack aspects important to the present discus-
sion. The original publications [7-9] were the consequences of a student project given to the
present author, namely, to assess what information about three-dimensional structures of
proteins were conveyed in their amino acid sequences when data was extremely limited. As
data became more plentiful, a Theory of Expected information emerged that could also be
applied more generally [10]. As a predictive method, it resembles but preempted the Bayes
Net [11].
The relevance to the relationship between information and entropy is clearer in later applica-
tions that included the analysis of biomedical data, given as large spreadsheet [12-15]. One
wished to address the information required to write and (primarily) extract information as
knowledge from a spreadsheet, e.g. each record (row) is a patient. The important thing is
that the individual data elements are attributes of form ‘attribute type’:=’attribute value’,
e.g. ‘systolic Blood pressure (mmHg)’:=140. There are 8 main points; point 6 is important to
the write-read-issue.

(1) The number of attribute types each called say A, B, C,... and hence number of columns
in a spreadsheet, is the so-called ”explicit dimensionality”, say N.

(2) Each unique attribute, an individual data element such as ‘systolic Blood pressure
(mmHg)’:=140, may be encoded by a distinct prime number 2, 3, 5, 7,..., the product of
which, i.e. a composite number, encodes all the information in each row (record) analysed in
turn. Note that attributes in a record can occur more than once with the same number code.
This leads to many insights and useful algorithms, not least to relate the method of counting
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combinations of states and to the Riemann zeta function [12,13].

(3) The prime factorization theorem ensures that we can always recover all the informa-
tion in a record (row). The number theory function called τ indicates that we can divide each
record composite number by 1, 2 ,3, 4, 5,. . . and when the result is an integer it is a prime
encoding e.g. the prime number for (A) or the composite number for each combination (A,
B), (A, C,) (B, D, F), (G, L, P, S, V). (Only 2 divisions up to the square root is of the record
composite number is needed and the rest can be deduced).

(4) Summing over the combinatorial equations for the factorization into the above com-
binations shows that number of number of combinations (“joint events”) to extract per row
for association analysis, e.g. (A), (A, B), (A, C,) (B, D, F), (G, L, P, S, V) etc., is 2N combinations
if one had huge computer resources. 2N includes the empty state ( ), so one typically writes
the combinatorial sum as 2N – 1. This 2N has nothing to do with whether the values in the
spreadsheet are binary or not.

(5) Having extracted those combinations as joint events per record (row), one wishes to
count how many times each of e.g. (A), (A, B), (A, C,) (B, D, F), (G, L, P, S, V) etc. occur in
the whole spreadsheet, to do statistics and notably compute e.g. log odds or Fano mutual
information for each combination. That depends on the number of distinguishable attribute
values per column, called the cardinality, which need not be binary. The cardinality does not
have to be the same for each column, but here we say it is C, so CN is the ”effective dimen-
sionality”. The method will allow unknowns, so C can be exactly the maximum number of
distinguishable values over all attributes in principle, even if not all examples might be seen
and entered on the spreadsheet.

(6) N and C are then sufficient to describe the information-entropy issue, with an impor-
tant caveat (size of counts) below. Increasing N and C obviously increases the information
in your spreadsheet, but it also increases the entropy that matters to analysis because it
gives more ways to pick out any combinatorial state (A), (A, B) etc., and test, e.g., its Fano
information to see if it is significant. This entropy is “The Dragon on the Gold” of high
dimensional data mining [12]. The logo for this American Chemical Society paper [12] was
as follows.

(7) The actual information measure developed in natural units is the integral:∫
P
(
p|D
)

log
(
p
)

dp, (natural log) given data D, an expected value reminiscent of Shannon
information, but now p is the probability that that we believe that n out of ntotal observations
accurately reflects the underlying or “true” probability “out there”, and one will be less sure
if n and ntotal are small numbers like 2/3 than if large e.g. 2000/3000. So, for each n/ntotal
we hold a distribution of posterior degrees of belief P

(
p|D
)
; the entropy of that is larger for
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smaller data. The integral is easiest to solve for Bayes’ Equation to give expected predictive
odds

∫
P
(
p|D
)

log
(
p/(1 − p)

)
dp, but it always ends in expressions in partially summed zeta

functions ξ, i.e. ξ(s = 1, n) = 1 + 1/2 + 1/3 +...+ 1/n here n is a number of occurrences.
Choosing s > 1 gives higher moments of information as other surprise measures. (e.g. s =∞
gives 0 or 1. We may speak of the Riemann zeta function because the value of s can also be
complex (including an imaginary part), including split-complex, which leads to a large vari-
ety of applications utilizing Dirac notation and algebra in quantum mechanics, probabilistic
knowledge nets, and extending Bayes Nets to bidirectional general graphs including cyclic
paths without iteration [16]. For any event X occurring n[X] times, e.g. (A) or joint event X
e.g. (A,B) etc. the integration gives I(X) = ξ (s = 1, n[X]) - ξ (s = 1, ntotal – n[X]).
Note that we should write E(X:not-X |D) where E indicates the expected value of prior odds
X:not-X, conditional on data D. However, we may hold the new information measure to be
axiomatic of information that depends on amount of data. It is assumed here there is no
prior belief for simplicity (though it is incredibly simple to include it by adding to n a virtual
frequency υ).

(8) The expected Fano information in natural units can be written as I(X;Y) where each of
X and Y can be one event or a joint event: I(X; Y) = ξ( s = 1, n[X,Y]) - ξ ( s = 1, e[X,Y]). Note
that n[ ] is the observed frequency and e is the expected frequency, e.g. in the chi-squared
test sense.
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