
ISSN 2976 - 730X
IPI Letters 2024,Vol 2 (2):76-79

https://doi.org/10.59973/ipil.122

Received: 2024-09-13
Accepted: 2024-09-14

Published: 2024-09-16

Opinions

Solving NP-complete Problems Efficiently

Frank Vega1,∗

1Independent Researcher, Cotorro, Havana, Cuba

∗Corresponding author: vega.frank@gmail.com

Abstract - The P versus NP problem is a fundamental question in computer science. It asks whether problems
whose solutions can be quickly verified can also be quickly solved. Here, ”quickly” refers to computational
time that grows proportionally to the size of the input (polynomial time). While the problem’s roots trace back
to a 1955 letter from John Nash, its formalization is attributed to Stephen Cook and Leonid Levin. Despite
extensive research, a definitive answer remains elusive. Closely tied to this is the concept of NP-completeness.
If a single NP-complete problem could be solved efficiently, it would imply that all problems in NP can be
solved efficiently, proving that P equals NP. Garey and Johnson defined K-CLOSURE such that for any edge
(u, v) in the directed graph, either node u is in the set V’ or node v is not in V’. This implies that either both
nodes are in V’ or both are not in V’. Our previous work in IPI Letters presented a polynomial-time algorithm
for K-CLOSURE. While no errors have been identified in this work, many believe that Garey and Johnson’s
original definition was incorrect, and their citation of Queyranne was a misunderstanding. Many argue that
the empty set serves as a simple counterexample to Garey and Johnson’s definition of K-CLOSURE. This paper
proposes that K-CLOSURE is actually an NP-complete problem, which would imply that P equals NP.

Keywords - Complexity classes; Boolean formula; Graph; Completeness; Polynomial time.

1 Introduction

Computer science is confronted by the formidable challenge of the P versus NP problem [1]. Funda-
mentally, this inquiry seeks to determine if the ability to swiftly verify a solution implies the capacity
to swiftly compute it. Here, ”swiftly” denotes algorithms with a polynomial time complexity, where
computational time grows proportionally to input size. Problems solvable within polynomial time
constitute the class P. Conversely, NP encompasses problems whose solutions can be verified effi-
ciently given a suitable ”certificate” - a piece of information enabling rapid validation [2].

The crux of the P versus NP question lies in whether P and NP are identical. A prevailing belief
is that P is a strict subset of NP (P , NP), signifying that certain problems are inherently more
difficult to solve than to verify. Resolving this enigma holds profound implications for fields such as
cryptography and artificial intelligence [3], [4]. The P versus NP problem is widely considered one
of the most challenging open questions in computer science. Evidence supporting its difficulty arises
from techniques like relativization and natural proofs, which have yielded inconclusive results [5], [6].
Similar problems, such as the VP versus VNP problem in algebraic complexity, remain unsolved [7].

Resolving the P versus NP question is often described as a ”holy grail” of computer science. A
positive resolution would revolutionize our understanding of computation, potentially leading to
groundbreaking algorithms for critical problems. Reflecting its significance, the problem is listed
among the Millennium Prize Problems. While recent years have seen progress in related areas, such

https://doi.org/10.59973/ipil.122
mailto:vega.frank@gmail.com

P vs NP

as finding efficient solutions to specific instances of NP-complete problems, the core question of P
versus NP remains unanswered [8]. A polynomial-time algorithm for any NP-complete problem
would directly imply P equals NP [9]. Our work focuses on presenting such an algorithm for a
well-known NP-complete problem.

2 Background and ancillary results

NP-complete problems are the Everest of computational challenges. Despite the ease of verifying
proposed solutions with a succinct certificate [9], finding these solutions efficiently remains an elusive
goal. A problem is classified as NP-complete if it satisfies two stringent criteria within computational
complexity theory:

1. Efficient Verifiability: Solutions can be swiftly checked using a concise proof.

2. Universal Hardness: Every problem in the class NP can be transformed into an instance of this
problem without significant computational overhead [9].

The implications of finding an efficient algorithm for a single NP-complete problem are profound.
Such a breakthrough would serve as a master key, unlocking efficient solutions for all problems
in NP, with transformative consequences for fields like cryptography, artificial intelligence, and
planning [3], [4].

Illustrative examples of NP-complete problems include:

• Boolean satisfiability (SAT): Given a logical expression, determine if there exists an assignment
of truth values to its variables that makes the entire expression true [10].

• CLIQUE: Given an undirected graph G = (V,E) and a positive integer k, decide whether there
exists a subset V′ of V containing at least k vertices such that every two vertices in V′ are
connected by an edge in G [10].

The provided examples represent a small subset of the extensively studied NP-complete problems
relevant to our current work. We introduce the following problem:

Definition 2.1. K-CLOSURE
INSTANCE: A directed graph H = (W,A) and a positive integer k.
QUESTION: Is there set V′ of at most k vertices such that for all (u, v) ∈ A either u ∈ V′ or v < V′?
REMARKS: Note that in this problem, the phrase “either u ∈ V′ or v < V′” is equivalent to either “(u ∈ V′

and v ∈ V′) or (u < V′ and v < V′)”. This is because the logical implication of the phrase “either ... or ...”
requires that exactly one of the two conditions be true. Vega’s paper [11] presents a polynomial-time algorithm
for solving this problem. Garey and Johnson asserted in their book [10] that the K-CLOSURE problem is
NP-complete.

By presenting the NP-completeness of K-CLOSURE, we would establish a proof that P equals NP.

3 Main Result

This is a main insight.

Theorem 3.1. K-CLOSURE ∈ NP–complete.

Proof. The CLIQUE problem, which involves determining if a clique of size at least k exists in a
given undirected graph G = (V,E), can be reduced to the problem of finding a closure set V′ in a

constructed directed graph H = (W,A) of size at most (n − k) + 2 · n2
·

((
n
2

)
−m + n − k

)
, where n =| V |

is the number of vertices and m =| E | is the number of edges of G. The directed graph H is created
by introducing 2 · n2 new vertices u(ab,1),u(ab,2), . . . ,u(ab,n2)︸ ︷︷ ︸

new n2 vertices

∈ W and v(ab,1), v(ab,2), . . . , v(ab,n2)︸ ︷︷ ︸
new n2 vertices

∈ W for

https://ipipublishing.org/index.php/ipil/ 77

https://ipipublishing.org/index.php/ipil/

P vs NP

each pair of vertices a, b ∈ V and adding 2 · n2 new edges (a,u(ab,1)), (a,u(ab,2)), . . . , (a,u(ab,n2))︸ ︷︷ ︸
new n2 edges

∈ A and

(b, v(ab,1)), (b, v(ab,2)), . . . , (b, v(ab,n2))︸ ︷︷ ︸
new n2 edges

∈ A whenever (a, b) < E or a = b. Note that, an empty closure can

imply the maximum clique in a complete graph G. Given that CLIQUE is an NP-complete problem,
it follows that K-CLOSURE is also NP-complete. □

This is the main theorem.

Theorem 3.2. P = NP.

Proof. A polynomial-time solution to any NP-complete problem would establish the equivalence of
P and NP [9]. Despite extensive research on over 300 significant NP-complete problems, no such
polynomial-time algorithm has been discovered [9]. Given that K-CLOSURE is an NP-complete
problem, a polynomial-time solution for it, as presented in the reference [11], would directly imply P
equals NP. □

4 Conclusion

A definitive proof that P equals NP would fundamentally reshape our computational landscape. The
implications of such a discovery are profound and far-reaching:

• Algorithmic Revolution.

– The most immediate impact would be a dramatic acceleration of problem-solving capabil-
ities. Complex challenges currently deemed intractable, such as protein folding, logistics
optimization, and certain cryptographic problems, could become efficiently solvable [3].
This breakthrough would revolutionize fields from medicine to cybersecurity. Moreover,
everyday optimization tasks, from scheduling to financial modeling, would benefit from
exponentially faster algorithms, leading to improved efficiency and decision-making across
industries [3].

• Scientific Advancements.

– Scientific research would undergo a paradigm shift. Complex simulations in fields like
physics, chemistry, and biology could be executed at unprecedented speeds, accelerating
discoveries in materials science, drug development, and climate modeling [3]. The abil-
ity to efficiently analyze massive datasets would provide unparalleled insights in social
sciences, economics, and healthcare, unlocking hidden patterns and correlations [3].

• Technological Transformation.

– Artificial intelligence would be profoundly impacted. The development of more powerful
AI algorithms would be significantly accelerated, leading to breakthroughs in machine
learning, natural language processing, and robotics [8]. While the cryptographic landscape
would face challenges, it would also present opportunities to develop new, provably secure
encryption methods [8].

• Economic and Societal Benefits.

– The broader economic and societal implications are equally significant. A surge in inno-
vation across various sectors would be fueled by the ability to efficiently solve complex
problems. Resource optimization, from energy to transportation, would become more
feasible, contributing to a sustainable future [3].

In conclusion, a proof of P = NP would usher in a new era of computational power with transformative
effects on science, technology, and society. While challenges and uncertainties exist, the potential
benefits are immense, making this a compelling area of continued research.

78 https://ipipublishing.org/index.php/ipil/

https://ipipublishing.org/index.php/ipil/

P vs NP

Acknowledgements

Many thanks to Sergi Simon, Jorge Félix and Melvin Vopson for their support.

References

[1] Stephen Arthur Cook. The P versus NP Problem, Clay Mathematics Institute. https://www.
claymath.org/wp-content/uploads/2022/06/pvsnp.pdf, June 2022. Accessed September 13,
2024.

[2] Madhu Sudan. The P vs. NP problem. http://people.csail.mit.edu/madhu/papers/2010/
pnp.pdf, May 2010. Accessed September 13, 2024.

[3] Lance Fortnow. The status of the P versus NP problem. Communications of the ACM, 52(9):78–86,
2009. doi:10.1145/1562164.1562186.

[4] Scott Aaronson. P ?
=NP. Open Problems in Mathematics, pages 1–122, 2016. doi:10.1007/

978-3-319-32162-2_1.

[5] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP Question. SIAM
Journal on computing, 4(4):431–442, 1975. doi:10.1137/0204037.

[6] Alexander A Razborov and Steven Rudich. Natural Proofs. Journal of Computer and System
Sciences, 1(55):24–35, 1997. doi:10.1006/jcss.1997.1494.

[7] Avi Wigderson. Mathematics and Computation: A Theory Revolutionizing Technology and Science.
Princeton University Press, 2019.

[8] Lance Fortnow. Fifty Years of P vs. NP and the Possibility of the Impossible. Communications of
the ACM, 65(1):76–85, 2022. doi:10.1145/3460351.

[9] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

[10] Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

[11] Frank Vega. Note for the P versus NP Problem. IPI Letters, 2(2):14–18, Jun. 2024. URL: https:
//ipipublishing.org/index.php/ipil/article/view/92, doi:10.59973/ipil.92.

https://ipipublishing.org/index.php/ipil/ 79

https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
http://people.csail.mit.edu/madhu/papers/2010/pnp.pdf
http://people.csail.mit.edu/madhu/papers/2010/pnp.pdf
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1007/978-3-319-32162-2_1
https://doi.org/10.1007/978-3-319-32162-2_1
https://doi.org/10.1137/0204037
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1145/3460351
https://ipipublishing.org/index.php/ipil/article/view/92
https://ipipublishing.org/index.php/ipil/article/view/92
https://doi.org/10.59973/ipil.92
https://ipipublishing.org/index.php/ipil/

	Introduction
	Background and ancillary results
	Main Result
	Conclusion

