
ISSN 2976-9094
EMJSR 2026, Vol 4:P1-P8

https://doi.org/10.59973/emjsr.320

Received: 2026-01-12
Accepted: 2026-01-20
Published: 2026-01-21

A Machine Learning Approach to Measuring Time
Delays in Microlensed Type la Supernovae

Harry Ssuna Rogers Nsubuga1,2,∗

1 Royal Holloway University of London, Department of Physics, Egham TW20 0EX, United Kingdom
2 Institute of Cosmology & Gravitation, Portsmouth, PO1 3FX, United Kingdom

∗Corresponding author: harrynsubuga@gmail.com

Abstract - The discrepancy between early and late-Universe measurements of the Hubble constant, commonly referred
to as the Hubble tension, remains one of the most significant open problems in modern cosmology. Strongly-lensed Type
Ia supernovae provide a promising and independent probe of the cosmic expansion rate through time-delay cosmogra-
phy, but their practical application is hindered by microlensing distortions and limited observational cadence. In this
work, a machine-learning–based method is presented for estimating time delays in microlensed Type Ia supernova light
curves. Using realistically simulated lensed supernova datasets, a random forest regression moddel is trained and evalu-
ated to recover time delays between unresolved image pairs. This demonstrates how data-driven approaches can mitigate
microlensing-induced biases relative to traditional cross-correlation methods and recover delays with improved robust-
ness under challenging observational conditions. While this study does not perform a full cosmological inference, the
results demonstrate the potential role of machine-learning techniques in future time-delay cosmography pipelines aimed
at addressing the Hubble constant tension.

Keywords - Gravitational Lensing; Type Ia Supernovae; Time-Delay Cosmography; Microlensing; Machine Learning;
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1 Introduction

The Hubble constant H0 sets the present-day expansion rate of the Universe and plays a central role
in cosmology. Measurements derived from early-Universe observations of the cosmic microwave
background favour a lower value of H0 when interpreted within the standard ΛCDM model, while
late-Universe distance-ladder measurements based on Type Ia supernovae yield a higher value. This
statistically significant discrepancy, known as the Hubble tension, has persisted despite increasingly
precise observations and improved control of systematic uncertainties.

Time-delay cosmography offers an independent method for measuring H0 by exploiting the gravi-
tational lensing of transient astrophysical sources. When a background source is strongly lensed by
a foreground galaxy, multiple images form, each following a different path through spacetime. Vari-
ability in the source produces measurable time delays between these images, which depend on both
the lens mass distribution and cosmological distances. Accurate recovery of these delays is therefore
a key step in inferring cosmological parameters.
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Strongly lensed Type Ia supernovae are particularly attractive for time-delay studies due to their pre-
dictable and standardisable light curves. However, practical application is complicated by microlens-
ing from stars in the lensing galaxy, which introduces time-dependent magnification and distorts the
observed light curves. These effects can bias traditional time-delay estimation methods, especially
when combined with sparse cadence and photometric noise.

This study focuses on the methodological challenge of recovering time delays from microlensed
Type Ia supernova light curves and does not attempt a full cosmological inference or competitive
constraint on the Hubble constant. Instead, this paper explores whether machine-learning techniques
can provide a robust alternative to classical methods under realistic observational conditions.

2 Background and Motivation

While lensed quasars have historically dominated this field, lensed Type Ia supernovae offer comple-
mentary advantages. Since their intrinsic luminosity and temporal behaviour are predictable, Type Ia
supernovae are ideal probes for precise time-delay measurements in strongly lensed systems.

The time-delay equation [1], which relates to an unlensed path is given by:

t(θ, β) =
1 + zd

c
DdDs

Dds
τ(θ, β), (1)

where c is the speed of light, zd is the deflector redshift, τ is the Fermat potential, and Dd, Ds, and
Dds are the angular diameter distances from the observer to the lens, from the observer to the source,
and from the deflector to the source, respectively.

The Fermat potential τ is a geometrical quantity (with units of radians or arcseconds) solely defined
by the optical quantities imprinted in the relative mapping from the source to the image plane through
the lens equation. The quantity is known as the time-delay distance and encodes the cosmology-
dependent absolute distance scale.

D∆t ≡ (1 + zd)
DdDs

Dds
(2)

The angular diameter distances Dd, Ds, and Dds are cosmological distances and, in an FLRW uni-
verse, scale inversely with the Hubble constant,

Dd ∝
1

H0
, Ds ∝

1
H0
, Dds ∝

1
H0
. (3)

Substituting this scaling into the definition of D∆t yields:

D∆t ∝ (1 + zd)
(1/H0)(1/H0)

(1/H0)
∝

1
H0
. (4)

Hence,

t(θ, β) ∝ D∆t ∝
1

H0
. (5)

This inverse proportionality implies that precise measurements of strong-lens time delays provide
a direct and independent probe of the Hubble constant. For a fixed lens model and Fermat potential, a
larger observed time delay corresponds to a smaller value of H0, and vice versa. Consequently, time-
delay cosmography offers a powerful route to constraining the cosmic expansion rate that is largely
independent of both the local distance ladder and early-Universe measurements.
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Microlensing poses a major challenge for supernova time-delay measurements. Stars in the lensing
galaxy produce small-scale caustic structures that introduce stochastic, time-dependent magnifica-
tion, altering the shape of observed light curves without changing the underlying macro time delay.
Traditional approaches such as cross-correlation or template matching implicitly assume that distor-
tions are dominated by noise rather than coherent magnification variability, making them particularly
vulnerable to microlensing effects. This effect is illustrated schematically in Figure 1.

Machine-learning approaches offer a potential route to overcoming these limitations by learning latent
temporal relationships directly from data. Rather than relying on explicit assumptions about light-
curve morphology, supervised learning models can be trained to recognise delay-sensitive features
even in the presence of complex distortions. This motivates the exploration of data-driven methods
for time-delay estimation in microlensed supernovae.

Figure 1: [[2] Schematic diagram of the gravitational lensing geometry. Light from a source at angular position η in the source plane is deflected by
an angle α̂ at the lens plane, producing an observed image at angular position θ. The vectors ξ and η denote physical positions in the lens and source
planes, respectively, while Dd , Ds, and Dds are the angular diameter distances from the observer to the deflector, from the observer to the source, and
from the deflector to the source. The unlensed path is shown for reference.

3 Simulated Dataset

The data used in this study are derived from the HoliSmokes dataset, which was developed to support
time-delay challenges for strongly lensed Type Ia supernovae under realistic observational conditions.
The dataset provides simulated supernova light curves incorporating gravitational lensing, microlens-
ing, observational noise, and survey cadence effects, making it well suited for controlled evaluation
of time-delay estimation methods. Table 1 summarises the specific HoliSmokes configuration used
for training and evaluation of the Random Forest model.

To construct a supervised learning problem, macro-level time delays are explicitly injected during
training by applying known temporal offsets between pairs of microlensed light curves. During train-
ing, injected delays span a physically representative range for galaxy-scale strong lenses, enabling
the model to learn delay-sensitive temporal structure. In contrast, model evaluation is performed at a
single fixed injected macro delay, with performance assessed across many independent microlensing
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System number Nsys Image number Nim κ γ s zs zd

1
1 0.250895 0.274510 0.6 0.76 0.252
2 0.825271 0.814777 0.6 0.76 0.252

2
1 0.250895 0.274510 0.6 0.55 0.252
2 0.825271 0.814777 0.6 0.55 0.252

3
1 0.250895 0.274510 0.6 0.99 0.252
2 0.825271 0.814777 0.6 0.99 0.252

4
1 0.250895 0.274510 0.6 0.76 0.16
2 0.825271 0.814777 0.6 0.76 0.252

5
1 0.250895 0.274510 0.6 0.76 0.48
2 0.825271 0.814777 0.6 0.76 0.252

6
1 0.250895 0.274510 0.3 0.76 0.252
2 0.825271 0.814777 0.3 0.76 0.252

7
1 0.250895 0.274510 0.59 0.76 0.252
2 0.825271 0.814777 0.59 0.76 0.252

8
1 0.250895 0.274510 0.9 0.76 0.252
2 0.825271 0.814777 0.9 0.76 0.252

9

1 0.434950 0.414743 0.6 0.76 0.252
2 0.431058 0.423635 0.6 0.76 0.252
3 0.566524 0.536502 0.6 0.76 0.252
4 1.282808 1.252791 0.6 0.76 0.252

Table 1: [3] The different Lensed Type Ia supernova systems for which microlensed light curves were available.

realisations. The injected macro delay value used for evaluation is reported in Table 2.

zs zd Image 1 (κ, γ) Image 2 (κ, γ) Time delay [days]
0.76 0.252 (0.251, 0.275) (0.825, 0.815) 32.3

Table 2: [3] Macro Injected time-delay used for random forest model.

Microlensing effects are incorporated as time-dependent magnification applied to each image, intro-
ducing realistic distortions to the observed light curves without altering the underlying macro delay.
Photometric noise and irregular observational cadence are included to emulate survey conditions. In
many cases, images are assumed to be unresolved, requiring time delays to be inferred from blended
light curves rather than individually resolved components.

Preliminary tests conducted without explicit macro-delay injection during training resulted in de-
graded performance and increased bias, particularly in regimes of strong microlensing variability.
In these cases, the model exhibited reduced sensitivity to temporal offsets and a tendency to fit
amplitude-driven distortions rather than true delay structure. This motivated the controlled macro-
delay injection strategy adopted in the final pipeline.

The use of simulated data allows systematic exploration of microlensing-induced variability under
known ground-truth conditions, which would be infeasible using current observational samples of
strongly lensed Type Ia supernovae alone.

4 Methodology and Random Forest Construction

4.1 Training-Set

The supervised training set is constructed using simulated microlensed light curves drawn from the
HOLiSMOKES dataset. For each training example, two independent microlensing realisations corre-
sponding to different lensed images of the same Type Ia supernova are selected. A known macro-level
time delay is then applied to one of the images, creating a controlled temporal offset between the pair.
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During training, injected macro delays span a physically representative range for galaxy-scale strong
lenses. Longer delays are intentionally oversampled to mitigate regression bias toward short delays
and to ensure that the model remains sensitive to temporal offsets across the full delay range encoun-
tered during training. Each injected delay is treated as the ground-truth label for the corresponding
training pair.

Explicit macro-delay injection is essential for identifiability. Without controlled temporal offsets,
microlensing-induced distortions can dominate the learning signal, causing the model to associate
amplitude-driven variability with time delay. Preliminary tests without injected delays resulted in
increased bias and degraded generalisation, particularly in strongly microlensed regimes, motivating
the controlled injection strategy adopted in the final pipeline.

4.2 Feature Representation

Each training example is represented as a fixed-length feature vector constructed by concatenating the
normalised flux values of the two light curves. Prior to concatenation, each curve is independently
normalised to remove absolute flux and magnification information, ensuring that the model is sensi-
tive primarily to temporal structure rather than amplitude.

In addition to the concatenated light curves, a single lag-aware auxiliary feature is included, cor-
responding to the location of the peak of the cross-correlation function between the two curves. This
feature is not used as a standalone delay estimator, but instead provides a weak, physically motivated
temporal cue that improves convergence and reduces bias in microlensing-dominated regimes.

All feature definitions are fixed prior to training to avoid information leakage and to ensure consistent
evaluation.

4.3 Random Forest Regression and Calibration

A Random Forest regressor is trained to map the feature vectors to macro time-delay predictions.
Random Forests are well suited to this task due to their robustness to noisy, irregular data and their
ability to model non-linear relationships without requiring large training volumes. Approximately
103 trees are used, balancing predictive performance and computational efficiency.

Following training, a linear calibration is applied using a held-out validation subset to correct for
residual regression bias. This calibration step ensures unbiased delay recovery across the delay range
encountered during training and is applied uniformly to all subsequent predictions.

Model uncertainty is estimated from the dispersion of predictions across individual trees in the en-
semble, providing a natural measure of statistical uncertainty associated with each inferred delay.

4.4 Evaluation Strategy

Model evaluation is performed at a single fixed injected macro time delay, rather than across a range
of delays. The trained and calibrated model is applied to many independent microlensing realisa-
tions corresponding to this fixed delay. This strategy isolates the impact of microlensing variability
on time-delay recovery and enables a controlled assessment of bias and uncertainty under realistic
astrophysical distortions.

All performance metrics are computed relative to the fixed injected macro delay used in the eval-
uation.
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Figure 2: Simulated microlensed light curves are used to train a random forest regressor after injecting known macro time delays. Bias correction is
then applied using a held-out validation set to obtain corrected time delay estimates. The calibrated model is then used to predict time delays for the
new microlensed light curve pairs.

5 Results

The Random Forest model successfully recovers the injected macro time delay when evaluated across
multiple independent microlensing realisations. Predictions are tightly clustered around the injected
macro delay, with scatter dominated by microlensing-induced variability rather than systematic error,
as shown in Figure 3. The distribution of residuals (predicted minus true delay) exhibits a mean

Figure 3: Random Forest macro time-delay recovery using a lag-aware feature and linear calibration.

bias consistent with zero, indicating that the combination of broad delay-range training and linear
calibration effectively suppresses systematic offsets. The width of the residual distribution provides
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an estimate of uncertainty arising from microlensing, with typical values of order ∼1-2 days.

Figure 4: Bias in Random Forest macro time-delay recovery, evaluated across microlensing realisations and visualised as a function of training-delay
values.

The predicted-versus-true delay plot demonstrates good agreement with the one-to-one relation,
while the bias plot confirms the absence of significant systematic trends at the tested macro delay.
Prediction runtimes are sub-second, indicating that the method is computationally efficient and suit-
able for application to large samples.

Failure modes are observed when microlensing variability strongly alters light-curve morphology
or when the effective temporal information content is reduced by sparse cadence. These regimes
represent intrinsically low-information cases and are not specific to the machine-learning approach.

6 Implications for the Hubble Constant

Accurate recovery of macro time delays in the presence of microlensing is a necessary prerequisite for
time-delay cosmography using strongly lensed supernovae. While this study does not perform lens
mass modelling or derive a value of the Hubble constant, the demonstrated robustness to microlensing
variability at a representative delay suggests that machine-learning–based estimators can reduce one
of the dominant astrophysical uncertainties affecting such measurements.

By mitigating bias in time-delay estimation, data-driven approaches of this kind may improve the
reliability of future supernova-based constraints on the Hubble constant, particularly as upcoming
surveys increase the number of discovered lensed Type Ia supernovae.

7 Limitations and Future Work

This study is limited to simulated data and evaluates performance at a single fixed macro time delay.
Delay-dependent systematics are therefore not explored and remain an important target for future in-
vestigation. In addition, only a single photometric band is considered, and the effects of multi-band
information are not addressed.
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Future work will extend the evaluation across multiple macro delays, incorporate multi-band pho-
tometry, and apply the pipeline to real observational data as suitable samples become available. In-
tegration with full lens mass modelling and cosmological inference pipelines represents a necessary
step toward competitive measurements of the Hubble constant.

8 Conclusion

A machine-learning framework was successfully executed for recovering macro time delays in mi-
crolensed Type Ia supernova light curves using a Random Forest regression model trained on simu-
lated data from the HoliSmokes dataset. By explicitly injecting delays during training and evaluating
robustness across microlensing realisations, the method achieves unbiased delay recovery at a repre-
sentative macro delay.

While not a direct cosmological measurement, this work demonstrates that machine-learning ap-
proaches can play a constructive role in addressing microlensing-induced challenges in supernova
time-delay cosmography. As observational samples grow, such methods may form a key component
of future pipelines aimed at resolving the Hubble constant tension.
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