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Abstract - This study explores the development of neural network models for predicting atmospheric refrac-
tivity profiles from the input of sea clutter returns, with a focus on two distinct duct types: evaporation ducts
and hybrid ducts. Accurate prediction of these profiles is critical for various defense and communication
applications, where atmospheric refractivity significantly influences radar performance and signal propaga-
tion. To capture the differing characteristics of each duct type, three models were evaluated: two specialized
models trained independently on evaporation and hybrid duct data, and a joint model trained on both. Prior
to training, the dataset was balanced by down-sampling the more frequent hybrid duct cases to prevent bias.
Model performance was assessed using standard regression metrics including Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R?). The
specialized evaporation model achieved an R? score of 0.9894 and an RMSE of 0.10322, while the hybrid duct
model demonstrated superior precision with an R? of 0.9996 and RMSE of just 0.02095. The joint model main-
tained strong overall performance (R? = 0.9965, RMSE = 0.0591), though slight performance degradation was
noted in evaporation duct cases, suggesting mild overfitting to the structurally complex hybrid ducts. Model
predictions closely matched true refractivity profiles across both duct types, including cases with steep gradient
transitions. These results underscore the capacity of neural networks to generalize well across atmospheric
conditions. While joint models offer practical efficiency, specialized models may provide enhanced accuracy
for operational scenarios where precision in refractivity prediction is critical.

Keywords - Atmospheric Refractivity, Neural Networks, Ducting, Evaporation Duct, Hybrid Duct, Machine
Learning, Regression, Propagation Modeling, Refractivity Prediction, Environmental Data

1 Introduction

The performance of the maritime radar systems is heavily influenced by radio frequency propagation
conditions, particularly the refractivity profile of the atmosphere. Variations in temperature, humid-
ity, and pressure can cause changes in the refractivity of a radar wave, affecting how they propagate.
One of the most significant challenges is atmospheric ducting, where radar signals bend and extend
over the horizon, beyond their normal range, due to temperature inversions and humidity gradients.
This can lead to false detections, misinterpretations of target locations, and unexpected blind spots,
impacting maritime situational awareness and operational efficiency.

This project aims to address this issue by developing a machine learning model to predict the re-
fractivity profile using an input of radar sea clutter returns. By leveraging complex relationships
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between radar clutter data and atmospheric conditions, the model will provide real-time estimations
of propagation effects, allowing operators to better anticipate changes in radar detection range. The
neural network model, implemented in MATLAB, will enable near-instant “now-casting” of radar
propagation, optimizing radar performance and reliability.

If successful, this approach will offer a data-driven solution for predicting radar visibility under vary-
ing atmospheric conditions, improving maritime navigation, surveillance, and defense operations.
By improving the prediction of the refractivity profile, this research will enhance the accuracy and
adaptability of maritime radar systems, leading to more reliable detection, tracking, and operational
effectiveness.

2 Theory

2.1 Wave Propagation

To understand how radar waves interact with the atmosphere, it is important to review the physics
of electromagnetic (EM) wave propagation. EM waves, like all electromagnetic radiation, travel at
the speed of light in a vacuum, but their speed and direction can change in different media such
as air, water vapor, or clouds. These transverse waves consist of oscillating electric and magnetic
fields that are perpendicular to each other and the direction of travel. Their behavior is governed by
Maxwell’s equations. These are a set of four fundamental equations that describe how electric and
magnetic fields behave and interact. They form the foundation of classical electromagnetism, optics,
and electric circuits.

Gauss’s Law for Electric Fields

2_ P
VE_G0 (1)

. where:
E = electric field

p = charge density
€p = permittivity of free space

Gauss’s Law for Magnetic Fields

V-B=0 )

. where:
B = magnetic field

Faraday’s Law of Induction
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where:
‘3—‘? = a change in magnetic field
Ampere-Maxwell Law
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ot

. where:
J = current density
o = permeability of free space

Together, these equations explain how electromagnetic waves (like radar or light) are generated
and propagate through space. They show that a changing electric field creates a magnetic field and a
changing magnetic field induces an electric field. These interactions allow EM waves to self-propagate
through a vacuum or medium.
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2.1.1 Wavelength and Frequency

The relationship between wavelength (1), frequency (f), and wave speed (v) is described by:

v=fA (5)

where:
v = speed of wave propagation
f = frequency of the wave
A = wavelength

In the atmosphere, the speed of the wave is slightly less than in a vacuum due to the refractive index
(n) shown in the equation below:

c
0= (6)
where:

v = speed of wave propagation
¢ = speed of light
n = refractive index

The refractive index indicates how much the electromagnetic wave slows down when passing through
a medium compared to a vacuum. A refractive index greater than 1 means the wave travels slower
in that medium than in free space.

2.2 Introduction to Atmospheric Refractivity

Radar waves don’t always travel in straight lines through the atmosphere. Instead, they bend due to
changes in atmospheric conditions—specifically temperature, pressure, and humidity. This bending
is called refraction and it occurs from ‘light rays as they pass from one medium to another’ ([1]]). This
causes it to deviate towards or away from the normal, similar to how a straw appears bent in a glass
of water. The degree of bending is governed by Snell’s Law, which defines 'the angles of incidence
and transmission’ ([2]) when a wave encounters a boundary.

01 Sil’l(@l)
= — = 7
vy sin(6s) @
where:

n = refractive index
v1 and v, = velocity of waves in first and second mediums
01 = the angle of incidence
0, = the angle of refraction

This law is essential in optics but also applies to radar waves, which can slowly bend over long
distances when conditions change gradually. To better capture how the atmosphere affects radar
waves, we use a quantity called modified refractivity, which incorporates temperature, pressure,
humidity, and altitude into a single value using equation (8):

p

e e
M= 77‘67* - 5.6; + 375000ﬁ +0.157z (8)

where:
M = modified refractivity
p = pressure
T = temperature
e = vapour pressure
z = height

The quantity ‘M’ from equation represents a scaled-up version of the refractivity difference.
Since changes in atmospheric refractivity are typically very small, this scaling helps machine learning
models detect more significant patterns. Under normal atmospheric conditions, refractivity decreases
gradually with altitude, causing radar waves to bend gently and follow a predictable path. The value
of ‘"M’ changes slowly with height under normal conditions, causing radar waves to bend slightly.
However, when this gradient changes rapidly, it can lead to anomalous propagation which “occurs
when the refractive index is modified by changes in temperature gradient’ ([3]]), leading to unexpected
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radar performance. Figure (1)), shows how a radar wave can go through various different types of
refraction, sub-refraction, super-refraction and ducting.

Sub-refraction: > 157 M/km
Standard refraction: 118 M/km

Super-refraction: 0 - 79 M/km

Trapping: < 0 M/km

Figure 1:

From ([4]) showing the different types of refraction that can occur when a radar wave is placed under anomalous

propagation.

Figure (]I[) shows a number of different variations of bending against the Earth’s surface. This project
focuses on when a radar wave is bent towards the Earth’s surface - ducting.

2.2.1 Ducting

Ducting occurs when atmospheric conditions create channels that trap and refract electromagnetic
waves, affecting their long-distance propagation and extending the normal range. A primary cause is
temperature inversions, where “cold air at the surface gets trapped under a layer of warmer air” ([5]),
disrupting the normal temperature gradient and altering wave propagation. Humidity gradients,
defined as the “variation in concentration of their own vapor” ([6]), also significantly affect refraction.
Sudden humidity shifts, especially over oceans and coastal areas, can unpredictably extend radar
ranges or bend signals.
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Figure 2: This illustrates the refractivity profile of an Figure 3: This illustrates the refractivity profile of a hy-
evaporation duct. brid duct

This project focuses on two duct types: evaporation ducts and hybrid ducts. Evaporation ducts,
common over the sea, are “special atmospheric stratification that can affect the propagation path of
electromagnetic waves atsea” ([Z], p.1), shown in Figure[2] Hybrid ducts, characterized as “abnormal
atmospheric refraction structure with a suspended trapped layer” ([8], p.1), combine features of
evaporation and elevated ducts (Figure3). Elevated ducts form at higher altitudes and extend wave
range through atmospheric refraction driven by humidity gradient changes.
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2.3 Radar Range Equation

The range at which a radar system can detect a target is given by the radar range equation:

©)

where:

R = radar range [m]
Ps = transmitted power [W]
G = antenna gain
A = wavelength [m]
o = radar cross section [m?2]
P, = received power [W]

This equation estimates the maximum range under normal conditions. However, when ducting oc-
curs, radar signals can travel much farther than this equation predicts, making it crucial to understand
atmospheric refractivity for accurate radar performance.

2.4 Introduction to Machine Learning

Machine learning (ML), a branch of Al, enables computers to learn from data and make predictions
without explicit programming. Unlike traditional physics-based models, ML can capture complex
patterns directly from data and adapt with new information, enabling accurate, real-time refractivity
predictions that enhance radar performance in changing atmospheric conditions. In this project, a
feed-forward neural network, like the one shown in figure (4), will be employed as a regression model
to predict atmospheric refractivity profiles, based on the input features derived from clutter returns.

(prediction)

Input
(features)

Hidden Layers
lots of layers ~ “deep learning”

Figure 4:
Adapted from ([9]), this figure provides a visual representation of the structure of a simple neural network. It highlights
the flow of data through input, hidden, and output layers, illustrating how the network processes information to make
predictions.

Figure () works by processing input values, combining them with weights, adding a bias, and
passing the result through an activation function shown in equation (10).

§ = f (T wixi + D) (10)

where:
1 = predicted output
X1,%2, ..., X, = input variables
w1y, W, ..., w, = weights associated with each input variable
b = bias term
f = activation function applied to output

The network is trained on radar data paired with known refractivity profiles, learning to map inputs
to outputs. Performance is evaluated on separate test data to ensure the model generalizes well.
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Once trained, the model can provide fast, accurate refractivity estimates to improve radar detection,
especially under anomalous propagation conditions like ducting.

3 Material and Methods

3.1 Data

This section outlines the dataset used in this study, which includes evaporation and hybrid ducts
and is vital for developing and evaluating the machine learning model. Data cleaning is essential to
ensure quality, as raw data must be properly formatted for ML algorithms.

3.1.1 Data Collection

The data for this project, provided by my supervisors, consisted of two folders: one with clutter
return files and one with refractivity profile files, each corresponding to specific ducts. Since both sets
were initially unstructured, I first cleaned and organized the data to ensure compatibility with the
machine learning workflow. This careful preparation established a reliable foundation for smooth
and efficient subsequent processing.

3.1.2 Data Cleaning

After acquiring the data, I used MATLAB to clean and organize it in preparation for the machine
learning workflow. The sea clutter returns and refractivity profiles were stored in separate folders, so
I wrote a script to navigate through each directory, loop over all filenames, and extract the contents
of each file into two separate data frames. Each data frame was constructed by iterating through the
files, reading the relevant data, and appending it with the corresponding filename as a key. To merge
the refractivity profiles with their associated sea clutter returns, I implemented a loop that matched
entries in both data frames based on identical filenames. Once matched, I combined the two data
frames into a single, unified table. This final table contained five essential columns: filename, duct
strength, refractivity profile, sea clutter returns, and duct height. The resulting structure ensured that
all relevant information for each case was aligned and accessible, providing a clean and consistent
input format for the machine learning model.

3.1.3 Splitting

I structured the data by designating the sea clutter returns as the input variables and defining the
refractivity profile as the output variable. This setup enabled the machine learning model to learn
the relationship between the observed sea clutter returns and the corresponding refractivity profile.
Figure (5) shows a sample of the sea clutter return data in the units of decibels.

As seen in figure (5) the strength of the sea clutter data gets smaller as the range goes further. The
data for sea clutter returns was originally given to me in linear form, so to produce this graph in
decibels, I had to use this equation:

Clutter(dB) = 20 - log1o(Clutter(linear)) (11)

Before splitting the data into training and testing sets, I observed that the dataset contained signifi-
cantly more samples for hybrid ducts than for evaporation ducts. To prevent the neural network from
developing a bias toward the more prevalent hybrid duct type, I resized the datasets by reducing the
number of hybrid duct samples to match the number of evaporation duct samples. This balancing
step ensured that both duct types were equally represented during training and testing, promoting a
more robust and fair learning process across different atmospheric conditions. I divided the data into
training (80%), validation, and testing sets to support robust model development and evaluation. This
split allowed the model to learn from a substantial portion of the data, tune its parameters, and assess
its performance on unseen data. To further enhance evaluation reliability, I applied cross-validation,
which uses multiple data splits to reduce over-fitting and provide a more consistent estimate of the
model’s generalization ability.
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Figure 5:

This figure presents a sample from the dataset, illustrating a specific sea clutter return measured in decibels (dB).

3.1.4 Normalization
After this, I applied data pre-processing techniques to normalize the data as follows:

X—p
o

(12)

Xnorm =

where:
Xorm = normalized value of the data point
X = original value of the data point
u = mean of all data points within the feature
o = standard deviation of all data points within the feature
f = activation function applied to output

Equation (12) illustrates z-score normalization. This technique helps reduce the impact of outliers,
ensuring that extreme values do not disproportionately affect the model’s performance. By normal-
izing the features in this way, each feature is treated with equal importance, and the model can learn
more effectively from the data. This normalization step was crucial for ensuring that all features
contributed equally to the model’s predictions, particularly when using algorithms sensitive to the
scale of input data. Once the data was normalized, I then had to transpose the data so that it fit the
correct format of the MATLAB neural network as shown in Appendix C.

3.2 Neural Network
3.2.1 Neural Network Architecture

Predicting refractivity profiles from radar sea clutter data is complex due to the non-linear relation-
ships involved. The objective is to estimate a 599-dimensional output vector from 100 input features.
To tackle this, a deep feed-forward neural network was designed to capture and model these patterns
effectively. The neural network consisted of 7 hidden layers where it captured complex and more ab-
stract patterns to be able to learn through the training process. I used fully connected layers, allowing
for the neurons within each fully connected layer to become connected to every neuron within the
previous layer. I also used ReLU activation functions - shown in equation (13) - in between each fully
connected layer as it would introduce non-linearity within the network so that it can capture more
complex relationships by setting negative inputs to zero.

f(x) = max(0, x) (13)
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where:
if input x > 0, ReLU function passes through as it is, if x < 0, it returns to 0.

The decreasing number of neurons across layers follows a funnel structure, which gradually reduces
the data dimensionality while maintaining the most informative features.

3.2.2 Training Configuration

The training configuration defines various strategies that dynamically adjust the neural network’s
learning process throughout the training phase. These variations are essential for optimizing per-
formance and ensuring efficient convergence. The neural network was trained using the Adam
optimizer over 300 epochs with an initial learning rate of 5 x 107°. A piecewise schedule reduced the
learning rate by a factor of 0.5 every 100 epochs to support better convergence. Training used mini-
batches of 64 samples with data shuffled each epoch to improve generalization. L2 regularization
(0.0001) was included to reduce over-fitting. Model performance was validated every 10 iterations,
with early stopping triggered after 20 validation checks without improvement.

4 Results and Discussion

4.1 Training Performance

Three separate models were trained for this study to assess their individual and combined predictive
capabilities: an evaporation-only model trained solely on evaporation ducts, a hybrid-only model
trained only on hybrid ducts, and a joint model trained on both types.

RMSE
RMSE

—— = Fingl
R ————

100 2000 3000 4000 5000

Loss
Loss

i Final . 10 20 - 30 Final
501 2000 0 1000 2000 3000 4000 5000
Iteration Iteration

(a) Training loss for evaporation duct model (b) Training loss for hybrid duct model

RMSE

Loss

0 500 1000 2000
Iteration

(c) Training loss for joint model

Figure 6: Training loss over time for the three models: (a) evaporation ducts, (b) hybrid ducts, and (c) joint model.

Figures (6a), and show the training progress of each model, illustrating how the loss (Mean
Squared Error) and RMSE declined across epochs. The RMSE curve in the evaporation and hybrid
ducts model show a smooth downward trend, indicating that the model’s predictions became in-
creasingly accurate with each epoch. Meanwhile, the training loss decreased steadily in the bottom
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plot, confirming that the models were effectively minimizing the objective function. However, for
the joint duct model, as seen in Figure (6d), the model shows some inconsistencies with a few peaks
where the predictions diverge significantly from the actual values. These peaks indicate instances
where the model struggled to adapt to the complex relationships between evaporation and hybrid
ducts, resulting in inaccurate predictions for certain points.

4.2 Testing Performance

To assess model performance, four standard regression metrics were computed: MSE, MAE, RMSE,
and R? score. The first of these was Mean Squared Error (MSE) which is calculated as shown in
equation (14).

1 .
MSE = = XL, (yi — §)° (14)

where:
n = number of data points
yi = actual value for i sample
i = predicted value for i sample

This shows the MSE is calculated as the quantified average squared difference between the predicted
and actual refractivity values. The next metric calculated is Root Mean Squared Error (RMSE) shown

in equation (15).
RMSE = 1 X (yi — 1i)? (15)
n i=1 yl yl

where:
n = number of data points
yi = actual value for i* sample
i = predicted value for i sample

Equation shows RMSE as being the square root of MSE, provides a measure of the average
magnitude of prediction errors in the same units as the output variable. I also used the metric of
Mean Absolute Error (MAE) to measure the performance of my model which is calculated as shown
in equation (16).

1 .
MAE = ;Z;Lllyi - Uil (16)

where:
n = number of data points
y; = actual value for i sample
i = predicted value for i** sample

Equation (16) shows the MAE evaluates the average absolute differences between predictions and
actual values. Finally the last metric I used was the coefficient of determination (R?); calculated as
shown in equation (17).

(yi — i)
R =1 SUI a7)
L(yi— 1)
where:

yi = actual value for if* sample
i = predicted value for i sample
7 = mean of the actual values

R? score assesses the proportion of variance in the actual output that is predictable from the inputs.
A value close to 1 means the model is performing well, where a score of 0.5 means the model is
performing as well as just predicting the mean of the values. A score of below 0.5 means the model
is not performing very well as it’s predictions are worse than just predicting the mean. These metrics
evaluate both the average magnitude of prediction errors and the extent to which the model explains
data variance. Tables , , and (3) summarize results for the evaporation, hybrid, and joint models.
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Table 1: Evaporation Only Model Table 2: Hybrid Only Model Table 3: The Joint Duct Model
Metric Value Metric Value Metric Value
MSE 0.010654 MSE 0.00043891 MSE 0.0034915
RMSE 0.10322 RMSE 0.02095 RMSE 0.059089
MAE 0.0390 MAE 0.0148 MAE 0.0343
R? Score | 0.9894 R?Score | 0.9996 R?Score | 0.9965

This multi-metric approach allows for a clear comparison of model accuracy and highlights any
trade-off in predictive performance when using a shared architecture across different duct types.
The results in the table demonstrate that lower error values (MSE, RMSE, and MAE) indicate more
accurate predictions, while a higher R? score reflects a stronger correlation between the predicted and
actual values, signifying better overall model performance.

4.3 Predictions on Unseen Data

To validate generalization, each model was tested on unseen examples from their respective cat-
egories. The evaporation-only and hybrid-only models were tested on withheld cases from their
specific duct types. The joint model was tested on a mixed set including both duct types.

4.3.1 Evaporation Only Model

Figures and (7b) show the correlation between the predicted values and the actual values against
the height, measured in meters, for a specific evaporation duct using the evaporation duct only model.
The model has never seen this specific duct before showing that it predicts the duct type very well.
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Figure 7: Predicted and actual refractivity profiles for two evaporation ducts using the evaporation-only model.

4.3.2 Hybrid Only Model

Figures and show the correlation between the predicted and actual values against height,
measured in meters, for a specific hybrid duct case using the hybrid-only model. This particular duct
was not included in the model’s training data, demonstrating that the hybrid-only model captures
the duct specific cases very well.

4.3.3 Joint Duct Model

Figures (9) and illustrate the correlation between the predicted and actual values as a function
of height, measured in meters, for a specific evaporation duct scenario using the joint duct model.
Subsequently, the model was evaluated on hybrid duct cases that were intentionally excluded from
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Figure 8: Predicted vs. actual refractivity profiles using the hybrid-only model.

the training phase. The results of this evaluation are presented in figures and (12). These figures
illustrate that the joint model was less effective at capturing the finer structural details of the ducts
compared to the individual models.

4.4 Discussion

The results show that the separate neural network models for evaporation and hybrid ducts achieve
near-perfect performance in predicting refractivity profiles within their respective domains. For both
models, the low error metrics along with a high R? score underline their effectiveness in capturing
the distinct structural features associated with each type of duct. These findings suggest that when
trained independently, the models are able to exploit patterns that are unique to evaporation and
hybrid ducts. This leads to highly accurate predictions and strong generalization on unseen data.
However, when a joint model is used to predict both evaporation and hybrid ducts simultaneously,
a decrease in performance occurs. While the joint model maintains similar overall error metrics,
a closer examination of the prediction plots reveals subtle yet consistent distortions in evaporation
duct predictions. These distortions are not present in the individual evaporation model and appear
to stem from the joint model’s shared internal representation. The model appears to favor the more
structurally complex hybrid ducts, resulting in slight over-fitting to hybrid duct characteristics at the
expense of accurately modeling the simpler, smoother evaporation ducts. This observation is further
supported by the performance metrics in table (3), which show that although the joint model performs
comparably in aggregate, its accuracy on evaporation ducts falls short of the dedicated evaporation
model. Thejoint model appears to over-parametrize features more relevant to hybrid ducts, leading to
localized deviations and a small but consistent drop in performance on simpler structures, a hallmark
of over-fitting in mixed-domain learning scenarios. This imbalance suggests that the joint model,
although theoretically appealing due to its simplicity and efficiency, may struggle to fully distinguish
the unique signal characteristics of both duct types within a shared feature space. It reflects a known
challenge in multi-task learning, where the learning of one task can inadvertently interfere with the
learning of another. Particularly, when one is more dominant or variable in structure. Moreover, the
pre-processing step of balancing the dataset before splitting was critical in enabling fair comparison
and evaluation. Without this, the model would likely have developed an even stronger bias toward
the more frequent duct type. Even with balanced input, the joint model’s tendency to slightly skew
toward hybrid ducts implies that architectural adjustments are needed. Such as introducing duct-
specific sub networks or attention mechanisms might be needed to preserve class specific accuracy
in future work. Another avenue worth exploring is the incorporation of metadata input features.
For example surface conditions, time of day, or environmental indicators that could help the model
better contextualize the input and adapt its representation accordingly. Cross-validation with real-
world operational data or regional datasets could also provide a more rigorous test of generalization
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Figure 9:
This figure compares the predicted and actual
refractivity profiles for an evaporation duct generated
by the joint model.
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Figure 11:
This figure compares the predicted and actual
refractivity profiles for a hybrid duct generated by the
joint model.
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Figure 10:
This figure compares the predicted and actual
refractivity profiles for another evaporation duct
produced by the joint model.
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Figure 12:

This shows the comparison the predicted and actual
refractivity profiles for another hybrid duct generated

by the joint model.

and help assess the model’s robustness across different atmospheric regimes. Ultimately, the findings
suggest that while the joint model is a promising foundation, further refinement is required to achieve
truly reliable, duct type specific performance.

5 Errors

Although overall model performance was strong, key error sources deserve attention, particularly
when comparing the evaporation-only and joint models in specific duct cases. For an evaporation
duct case, both models predict the refractivity profile with high accuracy, but minor deviations
are evident, especially around sharper gradients. Figure shows the error distribution for the
evaporation-only model, where small mismatches appear near surface layers. In contrast, Figure
highlights the deviations of the predictions away from the line of perfect prediction.

A similar trend is observed in the hybrid duct case. As illustrated in Figures and (14b), sharp
transitions in refractivity present a modeling challenge. The hybrid-only model closely aligns with
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Figure 13: Comparison of prediction errors for an evaporation duct using (a) the evaporation-only model and (b) the joint model.

the actual profile, particularly capturing upper-layer gradients with high accuracy. In contrast, the
joint model exhibits noticeable deviations near the lower boundary, suggesting a reduced ability to
represent finer-scale features in that region.
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Figure 14: Error comparison for a specific hybrid duct: (a) using the hybrid-only model, and (b) using the joint model.

6 Conclusion

This study demonstrated the effectiveness of neural networks in predicting atmospheric refractivity
profiles for evaporation and hybrid ducts. By comparing dedicated models with a joint model, the
trade-off between specialization and generalization was explored. Individually trained models for
each duct type showed excellent performance, with low errors and high R? scores, successfully cap-
turing the unique structural features of each profile and generalizing well to unseen data. In contrast,
the joint model, though competitive overall, showed slight degradation in accuracy—particularly
for evaporation ducts. This reflects the typical challenge in multi-task learning, where shared rep-
resentations can lead to interference between tasks. Balanced training data was critical in reducing
bias toward the more complex and prevalent hybrid ducts. However, the joint model still leaned
toward hybrid features, highlighting the need for improved modeling strategies. Future work should
consider enhanced architectures, such as task-specific subnetworks or multi-branch structures, to
better preserve the distinct characteristics of each duct type. Validating models with external or
operational datasets will also be key to assessing their real-world reliability. This research provides a
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solid foundation for further advancement in atmospheric modeling for maritime radar systems.
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